Rock and Soil Mechanics ›› 2024, Vol. 45 ›› Issue (3): 737-749.doi: 10.16285/j.rsm.2023.1041

Previous Articles     Next Articles

Experimental study on dynamic propagation characteristics of fracturing crack across coal-rock interface

LI Hao-zhe1, 2, JIANG Zai-bing2, FAN Zong-yang3, PANG Tao1, 2, LIU Xiu-gang2, 4   

  1. 1. China Coal Research Institute, Beijing 100013, China; 2. CCTEG Xi’an Research Institute (Group) Co., Ltd., Xi’an, Shaanxi 710077, China; 3. College of Petroleum Engineering, China University of Petroleum (Beijing), Beijing 102249, China; 4. College of Emergency Management and Safety Engineering, China University of Minim and Technology-Beijing, Beijing 100083, China
  • Received:2023-07-17 Accepted:2023-10-13 Online:2024-03-11 Published:2024-03-20
  • Supported by:
    This work was supported by the National Science and Technology Major Project (2016ZX05045002) and the Tiandi Science and Technology Innovation and Entrepreneurship Fund Special Key Project (2022-2-TD-ZD007).

Abstract: To investigate the dynamic propagation process of the fracturing crack across the coal-rock interface, similar materials were used to prepare coal-rock combined specimens. Three-point bending tests and true triaxial hydraulic fracturing tests were carried out. By the digital speckle technology and the acoustic emission (AE) technology, the dynamic propagation characteristics of the fracturing crack were captured. The fracture pattern and its influencing factors were analyzed. The results show that in the three-point bending test, the crack can penetrate into the coal seam directly from the roof without changing direction at the interface. The peak stress required for the specimen fracturing is reduced while increasing the prefabricated crack length. In the true triaxial hydraulic fracturing test, due to the strong plasticity of the coal seam, the crack height and length in the roof are both larger than those in the coal seam, and the proportion of acoustic emission events in the roof is also higher than that in the coal seam. When the crack propagates across layers, increasing the distance between the horizontal well and the top surface of the coal seam will lead to the extension of the crack propagation time. Increasing the injection rate of the fracturing fluid can increase the penetration depth of the crack into the coal seam, but it is easy to cause the crack height to be out of control and the reduction of crack length. The fracturing method with variable injection rates was proposed. In the initial stage, the fracturing fluid injection with a large rate promotes the crack propagation across layers, and then the injection rate is reduced to promote the lateral propagation of the crack in the roof and coal seam. There is a competitive propagation phenomenon among cracks when multiple cracks are initiated synchronously, and part of the cracks can not propagate across layers. The research results can provide support for mastering the propagation characteristics of the crack across the coal-rock interface and optimizing the hydraulic fracturing parameters.

Key words: coal-rock interface, fracturing across layers, dynamic propagation, digital speckle, acoustic emission

CLC Number: 

  • TE355
[1] ZHANG Sheng, BAI Wei, XU Ding-ping, ZHENG Hong, JIANG Quan, LI Zhi-wei, XIANG Tian-bing, . Experimental and theoretical study on sandstone damage evolution under cyclic loading based on acoustic emission and resistivity monitoring [J]. Rock and Soil Mechanics, 2025, 46(S1): 53-66.
[2] SONG Yi-min, WANG Teng-teng, XU Hai-liang, AN Dong, JIANG Xiao-dong. Recognition of strain information for rock deformation localization and rupture precursors [J]. Rock and Soil Mechanics, 2025, 46(S1): 171-182.
[3] HUANG Man, NING Hao-sheng, HONG Chen-jie, TAO Zhi-gang, LIU Yu-xing, ZHANG He, . Shear behaviors of infilled joints reinforced with second-generation negative Poisson’s ratio bolts [J]. Rock and Soil Mechanics, 2025, 46(S1): 131-140.
[4] LIU Yi-ming, LI Zhen, FENG Guo-rui, YANG Peng, BAI Jin-wen, HUANG Bing-xiong, LI Dong, . Acoustic-thermal response characteristics and precursor law of fissured sandstone under cyclic loading and unloading [J]. Rock and Soil Mechanics, 2025, 46(9): 2773-2791.
[5] LEI Rui-de, GU Qing-heng, HU Chao, HE Pei, ZHOU Lin-sen, . Acoustic emission signal characteristics and precursory recognition of rock failure in fractured sandstone [J]. Rock and Soil Mechanics, 2025, 46(7): 2023-2038.
[6] CHU Chao-qun, BAO Xing-jia, MAO Ming-fa, WU Shun-chuan, CUI He-jia, . Experimental study of acoustic emission characteristics and failure forms of deep-buried limestone under triaxial compression [J]. Rock and Soil Mechanics, 2025, 46(7): 2049-2061.
[7] LYU Meng, WANG Liang-qing, XIE Ni, ZHU Lin-feng, AN Cai-long, KE Rui, WANG Xu-chen, . Shear characteristics and acoustic emission response characteristics of anchored heterogeneous structural plane [J]. Rock and Soil Mechanics, 2025, 46(7): 2106-2120.
[8] MA Chun-de, KANG Zi-hao, YANG Wen-yuan, TAN Guan-shuang, ZHAO Jun-kang, . Experimental study on directional independence of multi-stage stress memory in granite under different loading rates [J]. Rock and Soil Mechanics, 2025, 46(6): 1709-1718.
[9] TANG Ju-peng, HUANG Lei, PAN Yi-shan, REN Ling-ran, ZHANG Xin, ZHANG Zhong-hua, . Experimental study on coal and gas outburst simulation in abrupt change area of coal seam dip [J]. Rock and Soil Mechanics, 2025, 46(6): 1719-1730.
[10] HAN Shi-ying, WANG Hang-long, PENG Jun, ZHU Jun-xing, WANG Lin-fei, PAN Kun, . Experimental investigation on influence of structural plane on rockburst characteristics of hard surrounding rock in a deep-buried tunnel [J]. Rock and Soil Mechanics, 2025, 46(6): 1765-1776.
[11] ZHANG Yan-bo, ZHOU Hao, LIANG Peng, YAO Xu-long, TAO Zhi-gang, LAI You-bang, . Acoustic emission location method of rock based on time precise picking and intelligent optimization algorithm [J]. Rock and Soil Mechanics, 2025, 46(5): 1643-1656.
[12] WANG Xiao-min, QU Jun-li, SHI Ya-ping. A microseismic P-wave arrival time picking method based on variance surge effect of autoregressive model [J]. Rock and Soil Mechanics, 2025, 46(4): 1335-1342.
[13] XU Qing-zhao, SHI Wen-bao, CHANG Ju-cai, MIAO Zhuang, YAN Ao-yun, LI Chuan-ming, QI Chao. Mechanical response and macro and micro failure mechanism of water-bearing coal samples with different loading rates [J]. Rock and Soil Mechanics, 2025, 46(3): 881-893.
[14] YU Tian-you, JIANG Guan-lu, RAO Qian-zhu, ZHU Dan, CHEN Hong-yu, LIU Xian-feng, . Damage and deterioration characteristics of red mudstone under water vapor cycles [J]. Rock and Soil Mechanics, 2025, 46(2): 479-491.
[15] LI Li-ping, YU Hong-hao, LI Qiu-yu, PAN Yi-shan, . Experiment on ultra-low friction effect of water-bearing coal block [J]. Rock and Soil Mechanics, 2025, 46(10): 3093-3103.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!