Rock and Soil Mechanics ›› 2024, Vol. 45 ›› Issue (5): 1284-1296.doi: 10.16285/j.rsm.2023.1610

• Fundamental Theory and Experimental Research • Previous Articles     Next Articles

Strain field evolution and ultrasonic time-lapse attenuation characteristics of fractured sandstone

ZHANG Chao-jun1, WU Shun-chuan1, 2, 3, CHU Chao-qun1, PANG Rui1   

  1. 1. Key Laboratory of Ministry of Education for Efficient Mining and Safety of Metal Mine, University of Science and Technology Beijing, Beijing 100083, China; 2. Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China; 3. Key Laboratory of Geohazard Forecast and Geoecological Restoration in Plateau Mountainous Area, Ministry of Natural Resources of the People’s Republic of China, Kunming, Yunnan 650093, China
  • Received:2023-10-26 Accepted:2024-01-31 Online:2024-05-11 Published:2024-05-07
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51934003) and the Yunnan Major Scientific and Technological Projects (202202AG050014).

Abstract: Identification of microcrack initiation, propagation and coalescence patterns is fundamental to the study of the development and evolution process of rock mass disasters. In order to explore the development process and mechanism of microcrack in fractured rock, the active ultrasonic measurement and digital image correlation technology (DIC) were used to simultaneously monitor the damage and fracture process of sandstone containing prefabricated fissure under uniaxial compression, and the surface strain field evolution and ultrasonic attenuation characteristics were analyzed. The results show that the local tensile stress concentration at the tip of the prefabricated fissure with a small inclination angle is conducive to earlier crack initiation. As the fissure inclination angle increases, the specimen containing prefabricated fissure changes from a relatively stable progressive rupture to a sudden failure, and its brittleness characteristics become more obvious. The surface strain field can track the initiation and propagation of crack in real time. The attenuation of P-wave velocity, amplitude spectrum and ultrasonic amplitude is closely related to the development of microcracks and the formation of macrocracks. The obvious attenuation of dominant frequency of ultrasonic waves can be regarded as direct evidence for the formation of macrocracks. The differences in P-wave velocity and amplitude attenuation in different ray paths are the results of anisotropy in the accumulation of damage induced by axial stress and prefabricated fissure. In addition, the improved spectral ratio method was used to analyze the time-lapse characteristics of ultrasonic attenuation, and it was found that the ultrasonic attenuation is more sensitive to the development of microcracks in rock media than P-wave velocity does. Further comparison found that the sensitivity of ultrasonic amplitude, surface strain, and P-wave velocity to rock damage identification decreased in order. The results of this study demonstrate that the active ultrasonic attenuation and DIC surface strain simultaneous monitoring are powerful tools for identifying and quantifying precursor information of rock damage and crack propagation.

Key words: crack propagation, active ultrasonic monitoring, attenuation, digital image correlation (DIC), strain field evolution

CLC Number: 

  • TU 452
[1] JIN Jie-fang, XIONG Hui-ying, XIAO You-feng, PENG Xiao-wang. Experimental study on sensitivity and propagation attenuation characteristics of rock ultrasonic wave under three-dimensional in-situ stress [J]. Rock and Soil Mechanics, 2025, 46(S1): 183-194.
[2] LIU Yi-ming, LI Zhen, FENG Guo-rui, YANG Peng, BAI Jin-wen, HUANG Bing-xiong, LI Dong, . Acoustic-thermal response characteristics and precursor law of fissured sandstone under cyclic loading and unloading [J]. Rock and Soil Mechanics, 2025, 46(9): 2773-2791.
[3] LI Man, XIN Hao-zhe, LIU Xian-shan, ZHANG Fan, HU Dai-wei, YANG Fu-jian, . Numerical study on mixed-mode fracture of rock mass based on modified phase field model [J]. Rock and Soil Mechanics, 2025, 46(8): 2600-2612.
[4] SUN Chuang, PU Yun-bo, AO Yun-he, TAO Qi, . Mechanical properties of freeze-thaw water-saturated fissured sandstone and its characterization of fine-scale fracture evolution [J]. Rock and Soil Mechanics, 2025, 46(8): 2339-2352.
[5] MA Peng-fei, ZHANG Yi-chen, YUAN Chao, XU Mao-zhou, GUO Xiao-xiong, . Simulations of interval damage phenomenon in weak rock mass using the improved peridynamic method [J]. Rock and Soil Mechanics, 2025, 46(7): 2296-2307.
[6] CHEN Yi-wei, DONG Ping-chuan, . Dispersion and attenuation of waves in saturated anisotropic fractured rocks [J]. Rock and Soil Mechanics, 2025, 46(6): 1934-1942.
[7] DU Hai-long, JIN Ai-bing, QIN Wen-jing, SHANG Rui-hao, WANG Chuang-jiang, MA Sai, . Mechanical properties and damage characteristics of cement grouted coal and rock under uniaxial compression [J]. Rock and Soil Mechanics, 2025, 46(5): 1521-1533.
[8] JIANG Hai-bo, LU Yan, LI Lin, ZHANG Jun, . Strength characteristics and damage evolution law of expansive soil in water conveyance channel under dry-wet and freeze-thaw action [J]. Rock and Soil Mechanics, 2025, 46(5): 1356-1367.
[9] CAO Hu, ZHANG Guang-qing, LI Shi-yuan, WANG Wen-rui, XIE Peng-xu, SUN Wei, LI Shuai, . A hydraulic fracture extension model for fracturing and enhanced oil recovery considering the influence of the fracture process zone and its application [J]. Rock and Soil Mechanics, 2025, 46(3): 798-810.
[10] ZHOU Jian, LIAO Xing-chuan, LIU Fu-shen, SHANG Xiao-nan, SHEN Jun-yi, . Application of convolution-based peridynamics in rapid simulation of random crack propagation [J]. Rock and Soil Mechanics, 2025, 46(2): 625-639.
[11] YANG Song, WANG Jun-guang, WEI Zhong-gen, XIN Tian-yu, LIANG Bing, WANG Li-xuan, REN Ling-ran. Preliminary study on creep characteristics and model of sandstone under attenuated oscillation disturbance [J]. Rock and Soil Mechanics, 2025, 46(11): 3485-3500.
[12] WANG Shuai, WANG Yu-hui, WANG Ling, LI Jia-qi, ZHAO Zi-hao, PANG Kai-xuan, . Influence mechanism of rock pore structure and mineral composition on crack propagation based on grain based model [J]. Rock and Soil Mechanics, 2025, 46(10): 3289-3301.
[13] MA Qiang, YANG Yi-qi, ZHOU Feng-xi, SHAO Shuai, . Characterization of wave propagation in thermo-viscoelastic media [J]. Rock and Soil Mechanics, 2025, 46(1): 303-314.
[14] JIA Bao-xin, ZHAI Zi-wei, ZHANG Jing, ZHOU Zhi-yang, YUAN Wen-ya, ZHENG Ke-nan, . Time-frequency and attenuation analysis of shallow tunnel high-speed railway vibration signal based on high-order local maximum synchrosqueezing transform [J]. Rock and Soil Mechanics, 2025, 46(1): 337-352.
[15] DU Jin-fei, DU Yu-xiang, JIA Yong-sheng, SUN Jin-shan, YAO Ying-kang, XIE Quan-min, FAN Kun-hui, . Analysis of deformation damage and energy dissipation of red sandstone under hydro-dynamic coupling effect [J]. Rock and Soil Mechanics, 2024, 45(S1): 248-258.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!