›› 2015, Vol. 36 ›› Issue (S1): 209-214.doi: 10.16285/j.rsm.2015.S1.035

• 基础理论与实验研究 • 上一篇    下一篇

土体力学特性颗粒尺度效应的理论与试验研究

冯德銮1,房营光1, 2,侯明勋1   

  1. 1.华南理工大学 土木与交通学院,广东 广州 510641;2. 华南理工大学 亚热带建筑科学国家重点实验室,广东 广州 510641
  • 收稿日期:2015-03-09 出版日期:2015-07-11 发布日期:2018-06-14
  • 作者简介:冯德銮,男,1985年生,博士研究生,主要从事岩土工程方面的科研工作。
  • 基金资助:
    亚热带建筑科学国家重点实验室资助项目(No.2012ZA04);国家自然科学基金青年基金(No.51208211)。

Theoretical and experimental studies of particle size effect of mechanical properties of soil

FENG De-luan1, FANG Ying-guang1, 2, HOU Ming-xun1   

  1. 1. School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, Guangdong 510641, China; 2. State Key Laboratory of Subtropical Building Science, South China University of Technology, Guangzhou, Guangdong 510641, China
  • Received:2015-03-09 Online:2015-07-11 Published:2018-06-14

摘要: 土体是一种复杂的颗粒体系,其强度与变形具有显著的颗粒尺度效应。为考虑土体不同尺度土颗粒对其宏观力学特性的影响,根据土颗粒间相互作用产生的黏聚和摩擦物理效应而非纯粹几何尺寸,划分土颗粒尺度层次以构造反映土体内部材料信息和颗粒特征信息的土体胞元。基于土体不同尺度结构层次上力学响应的特征,引入微重比的概念,建立具有多尺度分层次理论框架的胞元土体理论,解释土体力学特性颗粒尺度效应的物理机制,把微细观土力学理论从定性分析推进到定量计算的水平。设计一系列饱和重塑土的三轴不固结不排水剪切试验对土体的颗粒尺度效应进行测试,并定量计算胞元土体理论的应变梯度和內禀尺度等微细观计算参数。试验和理论计算结果均表明,土体强度和变形的颗粒尺度效应随加强颗粒的体分比增加以及粒径减小而增强,反映出土体强度和变形显著的颗粒尺度效应;土体强度和变形尺度效应的理论预测与试验结果具有较好的一致性。

关键词: 偶应力, 微重比, 土体胞元模型, 颗粒尺度效应, 內禀尺度

Abstract: Soil is a complex granular medium and its strength and deformation characteristics behave strong particle size effect. On the basis of the physical effects of cohesion and friction generated by the interactions between soil particles at different scales but not just the geometric dimensioning, a soil cell element that can describe the internal material information and particle characteristics of soil is constructed by dividing particle size into different scales to investigate the influence of soil particles at different scales on the macro-scale mechanical properties of soil. According to the mechanical responses of soil at various scales, the notion of ratio between micro-forces and gravity is introduced; and a multiscale and hierarchical soil cell element model is proposed to interpret the mechanism of the particle size effect of mechanical properties of soil. Therefore, the microscopic soil mechanics is promoted from qualitative analysis to quantitative calculation. A series of unconsolidated and undrained triaxial compression tests on saturated, remoulded soil are designed to study the particle size effect of soil and to quantitatively determine the strain gradient and intrinsic length scale of soil. The experimental results and theoretical analysis show that the particle size effect of the strength and deformation of soil is increased with raising volume fraction and decreasing size of the reinforcement particles, which suggests strong particle size effect. The theoretical prediction of size effect is in good agreement with that of the test result.

Key words: couple stress, ratio of micro-forces and gravity, soil cell element model, particle size effect, intrinsic length scale

中图分类号: 

  • TU 443
[1] 王冬勇, 陈曦, 王方宇, 彭丽云, 齐吉琳, . 基于罚函数偶应力理论的土体应变局部化研究[J]. 岩土力学, 2022, 43(S2): 533-540.
[2] 冯德銮 ,房营光 , . 土体直剪力学特性颗粒尺度效应理论与试验研究[J]. , 2015, 36(S2): 81-88.
[3] 房营光,. 土体强度与变形尺度特性的理论与试验分析[J]. , 2014, 35(1): 41-47.
[4] 吴延峰,张敦福,张 波,朱维申. 拉力型锚杆锚固界面剪应力分布偶应力理论分析[J]. , 2013, 34(S1): 187-191.
[5] 张敦福 ,王相玉 ,朱家明 ,李术才 ,朱维申 . 偶应力对层状岩体结构面边界层效应的影响[J]. , 2012, 33(7): 2181-2188.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 孙树林,李 方,谌 军. 掺石灰黏土电阻率试验研究[J]. , 2010, 31(1): 51 -55 .
[2] 李英勇,张顶立,张宏博,宋修广. 边坡加固中预应力锚索失效机制与失效效应研究[J]. , 2010, 31(1): 144 -150 .
[3] 李 晶,缪林昌,钟建驰,冯兆祥. EPS颗粒混合轻质土反复荷载下变形和阻尼特性[J]. , 2010, 31(6): 1769 -1775 .
[4] 王丽艳,姜朋明,刘汉龙. 砂性地基中防波堤地震残余变形机制分析与液化度预测法[J]. , 2010, 31(11): 3556 -3562 .
[5] 李秀珍,王成华,邓宏艳. DDA法和Fisher判别法在潜在滑坡判识中的应用比较[J]. , 2011, 32(1): 186 -192 .
[6] 吉武军. 黄土隧道工程问题调查分析[J]. , 2009, 30(S2): 387 -390 .
[7] 陈力华 ,林 志 ,李星平. 公路隧道中系统锚杆的功效研究[J]. , 2011, 32(6): 1843 -1848 .
[8] 陈立文,孙德安. 不同应力路径下水土耦合超固结黏土分叉分析[J]. , 2011, 32(10): 2922 -2928 .
[9] 赵明华,雷 勇,张 锐. 岩溶区桩基冲切破坏模式及安全厚度研究[J]. , 2012, 33(2): 524 -530 .
[10] 马 刚 ,常晓林 ,周 伟 ,周创兵 . 基于Cosserat理论的重力坝深层抗滑稳定分析[J]. , 2012, 33(5): 1505 -1512 .