›› 2017, Vol. 38 ›› Issue (5): 1289-1297.doi: 10.16285/j.rsm.2017.05.008

• 基础理论与实验研究 • 上一篇    下一篇

原生裂隙水压致裂原地应力测量的理论与实践新进展

王成虎1, 2,邢博瑞3   

  1. 1. 中国地震局 地壳应力研究所,北京 100085;2. 中国地震局 地壳动力学重点实验室,北京 100085; 3. 广东省地质科学研究所,广东 广州 510080
  • 收稿日期:2016-07-07 出版日期:2017-05-11 发布日期:2018-06-05
  • 作者简介:王成虎,男,1978年生,博士,研究员,主要从事地应力与地质力学方面的教学和科研工作。
  • 基金资助:

    国家自然科学基金资助项目(No. 41274100);中央级科研院所基本科研业务专项资助项目(No. ZDJ2012-20)。

A new theory and application progress of the modified hydraulic test on pre-existing fracture to determine in-situ stresses

WANG Cheng-hu1, 2, XING Bo-rui3   

  1. 1. Institute of Crustal Dynamics, China Earthquake Administration, Beijing, 100085, China; 2. Key Laboratory of Crustal Dynamics, China Earthquake Administration, Beijing, 100085, China; 3. Guangdong Provincial Institute of Geological Sciences, Guangzhou, Guangdong 510080, China
  • Received:2016-07-07 Online:2017-05-11 Published:2018-06-05
  • Supported by:

    This work was supported by the National Natural Science Foundation of China(41274100), and the Fundamental Research Funds for State Level Scientific Institutes (ZDJ2012-20).

摘要: HTPF法测试所需的数目众多的原生裂隙面大大制约了这种方法的推广应用。针对这一问题,通过为原生裂隙面上广泛存在的剪应力建立力学方程,利用最小二乘法和计算机程序试错搜索原生裂隙面摩擦系数的办法反演原地应力张量。理论上基于每个原生裂隙面的水压致裂测试结果可以建立两个力学方程,那么只需要3条原生裂隙就可以求解原地应力张量,但为了保证计算机程序反演收敛,至少需要5条原生裂隙,这一方法被定名为M-HTPF法。将这种方法在山东某科研钻孔的原地应力测量作业中进行了应用,通过利用5条原生裂隙面上的水压致裂测试得到的关闭压力和方位角数据,反演得到原地应力张量: 8.85 MPa,方位角为N58.12°W∠14.18°; 6.61 MPa,方位角为N26.2°E∠ 21.54°; 5.01 MPa,方位角为N62.86°E∠63.86°。通过与同一钻孔内的经典水压致裂法的测量结果对比可知,两种方法得到的最小主应力和中间主应力非常接近,最大主应力则相差较大;两种方法获得的最大、最小主应力方位角基本一致。该方法为单孔三维水压致裂原地应力测量提供了新的思路和途径。

关键词: 水压致裂, 修正HTPF法, 原地应力测量, 现场操作, 关闭压力

Abstract: Since many pre-existing fractures (i.e. more than 15) are required by the hydraulic testing of pre-existing fractures (HTPF) method, the application of HTPF method to various stress measurement conditions is restricted. To overcome the shortcomings, a mechanical equation is developed to describe the shearing stresses intrinsically occurring on geological discontinuity planes. The least square method and the trial searching algorithm code are used to calculate the frictional coefficient of pre-existing fractures and further to calculate in-situ stress tensors by the inversion technique. Theoretically, the hydraulic test on each pre-existing fracture is utilized to establish two mechanical equations, and three tests on pre-existing fractures is used to determine the in-situ stress tensor. Practically, to guarantee the convergence of the inversion code, at least five pre-existing fractures are required. Thus, the developed method is called the modified-HTPF method, which is further applied to measure in-situ stress in Weifang area, Shandong Province. During the process of stress measurement, the complete in-situ stress tensor is determined by the shut-in pressures from the hydraulic fracturing test on pre-existing fractures and the azimuth and dip angle data from Televiewer logging of five geological fractures. The in-situ stress tensors are characterized as 8.85 MPa, N58.12°W∠14.18°; 6.61 MPa, N26.2°E∠ 21.54°; and 5.01 MPa, N62.86°E∠63.86°. Compared with the data by the classic hydraulic fracturing (HF) method, the medium and minimum principal stresses determined by these two methods are similar, but there exists a large difference between the maximum principal stresses. The orientations of the maximum and minimum principal stresses determined by the modified-HTPF method are in good agreement with the classic HF method. The modified-HTPF method offers a new access to determine a complete stress tensor using a single borehole.

Key words: hydraulic fracturing, modified-HTPF, in-situ stress measurement, field operation, shut-in pressure

中图分类号: 

  • TU 473.1

[1] 张 伟, 曲占庆, 郭天魁, 孙 江. 热应力影响下干热岩水压致裂数值模拟[J]. 岩土力学, 2019, 40(5): 2001-2008.
[2] 张 波, 李 垚, 杨学英, 朱飘扬, 朱春帝, 刘子豪, 刘文杰, 罗志恒, . 一种用于水压致裂试验的水压供给装置研制及应用[J]. 岩土力学, 2019, 40(5): 2022-2028.
[3] 王璞, 王成虎, 杨汝华, 侯正阳, 王洪, . 基于应力多边形与震源机制解的 深部岩体应力状态预测方法初探[J]. 岩土力学, 2019, 40(11): 4486-4496.
[4] 刘跃东,林 健,冯彦军,司林坡,. 基于水压致裂法的岩石抗拉强度研究[J]. , 2018, 39(5): 1781-1788.
[5] 张 鹏 ,秦向辉 ,丰成君 ,孙炜锋 ,谭成轩 . 郯庐断裂带山东段深孔地应力测量及其现今活动性分析[J]. , 2013, 34(8): 2329-2336.
[6] 丰成君,陈群策,谭成轩,吴满路,秦向辉. 广东核电站地应力测量及其应用[J]. , 2013, 34(6): 1745-1752.
[7] 周龙寿,丁立丰,郭启攵良. 不同压裂介质影响下绝对应力测值的试验研究[J]. , 2013, 34(10): 2869-2876.
[8] 丰成君 ,陈群策 ,吴满路 ,赵金生 ,李国歧 ,安其美 . 水压致裂应力测量数据分析 ——对瞬时关闭压力ps的常用判读方法讨论[J]. , 2012, 33(7): 2149-2159.
[9] 郭保华. 单孔岩样水压致裂的数值分析[J]. , 2010, 31(6): 1965-1970.
[10] 康红普,林 健,张 晓,吴拥政. 潞安矿区井下地应力测量及分布规律研究[J]. , 2010, 31(3): 827-831.
[11] 王成虎,郭啟良,丁立丰,刘立鹏. 工程区高地应力判据研究及实例分析[J]. , 2009, 30(8): 2359-2364.
[12] 李 宏,马元春,王福江. 压磁套芯三维原地应力测量研究[J]. , 2007, 28(2): 253-257.
[13] 杨树新 ,许兆义 ,李 宏,. 三峡工程永久船闸开挖前后实测应力分布特征[J]. , 2006, 27(S2): 61-65.
[14] 刘允芳,韩晓玉,刘元坤. 深圳抽水蓄能电站水压致裂法三维地应力测量和分析[J]. , 2006, 27(S1): 1205-1210.
[15] 安其美,丁立丰,王海忠. 福建周宁水电站水压致裂地应力测量及其应用[J]. , 2004, 25(10): 1672-1676.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!