岩土力学 ›› 2019, Vol. 40 ›› Issue (10): 3987-4000.doi: 10.16285/j.rsm.2018.1351

• 岩土工程研究 • 上一篇    下一篇

新型预应力路基坡面法向附加应力扩散规律分析

冷伍明1, 2,张期树1,徐方1, 2,聂如松1, 2,杨奇1, 2,艾希1   

  1. 1. 中南大学 土木工程学院,湖南 长沙 410075;2. 中南大学 高速铁路建造技术国家工程实验室,湖南 长沙 410075
  • 收稿日期:2018-07-25 出版日期:2019-10-11 发布日期:2019-10-20
  • 通讯作者: 徐方,男,1986年生,博士,讲师,主要从事铁路路基及岩土工程等方面的研究。E-mail: fangxu@csu.edu.cn E-mail: wmleng@csu.edu.cn
  • 作者简介:冷伍明,男,1964年生,博士,教授,博士生导师,主要从事路基工程、地基与基础等方面的研究。
  • 基金资助:
    国家自然科学基金(No. 51678572,No. 51709284,No. 51878666)。

Diffusion behavior of additional stress perpendicular to the slope surface in a new prestressed subgrade

LENG Wu-ming1, 2, ZHANG Qi-shu1, XU Fang1, 2, NIE Ru-song1, 2, YANG Qi1, 2, AI Xi1   

  1. 1. School of Civil Engineering, Central South University, Changsha, Hunan 410075, China; 2. National Engineering Laboratory for High Speed Railway Construction, Central South University, Changsha, Hunan 410075, China
  • Received:2018-07-25 Online:2019-10-11 Published:2019-10-20
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51678572, 51709284, 51878666).

摘要: 以新型预应力路基为研究对象,基于弹性理论推导预应力加固结构(侧压板和预应力筋)作用下路堤内沿坡面法向的附加应力扩散系数计算公式,并获得侧压板正下方及其2个外延方向的预应力扩散规律。研究表明:(1)理论公式适用的边界条件为侧压板(边长为0.9 m)离路肩距离不小于1倍板宽;(2)法向分解力产生的扩散作用显著大于切向分解力;(3)由于切向荷载作用,侧压板正下方土体的总扩散应力随深度由“腹鼓形”差异分布逐渐过渡呈“腹平状”较均匀分布;(4)各深度平面上最大扩散系数位置随深度发展在作用区中轴线上不断变动;(5)不同区域的扩散效果为板体正下方>上边界外侧>左右边界外侧>下边界外侧,板体两外延方向的平均有效扩散深度达1.6 m。基于ABAQUS有限元软件建立三维精细化路堤模型对理论解进行验证,发现二者结果(包括路肩处)吻合良好,论证了扩散系数理论公式的正确性及适用条件。最后,基于多块侧压板作用下附加应力的分布情况,探寻侧压板的合理布置间距,保障路堤内一定深度处形成一道连续、有效且较为均匀的预压区,改善路堤土的受力状态,并对路堤边坡提供侧向强制约束,利于路基长期稳定。

关键词: 新型预应力路基, 侧压板, 附加应力场, 扩散规律, 布置间距

Abstract: Taking the new type prestressed subgrade as the research object, theoretical formulas for calculating the diffusion coefficient of additional stress perpendicular to the slope surface in an embankment induced by a prestressed reinforcement device (lateral pressure plate and prestressed bar) were derived based on the theory of elasticity. The presstress diffusion trends directly beneath the plate bottom as well as in the two external directions were analyzed. The results show that: 1) the applicable condition of the theoretical formulas requires that the net distance between the plate (with a side length of 0.9 m) and embankment shoulder should be not less than one time of the plate width; 2) the diffusion effects of the normal component force are much greater that those of the tangential component force; 3) due to the tangential component force, the total diffusion stress directly beneath the plate bottom presents a “raised abdomen” pattern and it gradually transits to a uniform “flat abdomen” pattern as the depth increases; 4) the maximum diffusion coefficient of the additional stress at different depths fluctuates on the plate centerline as the depth increases; 5) the diffusion effects in different zones show a descending order, i.e., directly beneath the plate bottom > the outside of the upper boundary > the outside of the left and right boundaries > the outside of the lower boundary, and the average effective diffusion depth in the two directions is about 1.6 m. A refined 3D FEM model using the ABAQUS software was established to verify the theoretical formulas. It was found that the finite element results (including at the embankment shoulder) agree well with the theoretical data, which demonstrates the validity and applicability of the theoretical formulas. Finally, the rational plate spacing was explored based on the distribution of the superimposed additional stress under the action of multiple lateral pressure plates to form a continuous, effective and relatively uniform preloading area at a certain depth. The prestressed reinforcement device can improve the stress state of the soil embankment and provide lateral constraints to the embankment slope, which is beneficial for the long-term stability of the subgrade.

Key words: new prestressed subgrade, lateral pressure plate, additional stress field, diffusion law, spacing arrangement

中图分类号: 

  • U 213
[1] 艾希, 冷伍明, 徐方, 张期树, 翟斌, . 新型预应力路基水平附加应力计算的图表法[J]. 岩土力学, 2020, 41(1): 253-266.
[2] 程 桦, 彭世龙, 荣传新, 孙泽辉, . 千米深井L型钻孔预注浆加固硐室围岩 数值模拟及工程应用[J]. 岩土力学, 2018, 39(S2): 274-284.
[3] 李术才,冯 啸,刘人太,张乐文,韩伟伟,郑 卓. 考虑渗滤效应的砂土介质注浆扩散规律研究[J]. , 2017, 38(4): 925-933.
[4] 张庆松 ,张连震 ,刘人太 ,韩伟伟 ,朱明听 ,李相辉 ,郑东柱 ,徐咸辉,. 水泥-水玻璃浆液裂隙注浆扩散的室内试验研究[J]. , 2015, 36(8): 2159-2168.
[5] 刘 健,张载松,韩 烨,吴 星. 考虑黏度时变性的水泥浆液盾构壁后注浆扩散规律及管片压力模型的试验研究[J]. , 2015, 36(2): 361-368.
[6] 俞文生 ,李 鹏 ,张 霄 ,王 倩,. 可变倾角单裂隙动水注浆模型试验研究[J]. , 2014, 35(8): 2137-2143.
[7] 孙 锋,张顶立,姚海波. 土坝坝体底部劈裂灌浆加固效果研究[J]. , 2010, 31(4): 1187-1192.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!