岩土力学 ›› 2020, Vol. 41 ›› Issue (1): 166-174.doi: 10.16285/j.rsm.2018.2102

• 基础理论与实验研究 • 上一篇    下一篇

采煤工作面层状结构底板采动稳定及 破坏深度的圆弧滑动解

鲁海峰1, 2,孟祥帅2,颜伟3,姚多喜2   

  1. 1. 安徽理工大学 煤矿安全高效开采省部共建教育部重点实验室,安徽 淮南 232001;2. 安徽理工大学 地球与环境学院,安徽 淮南 232001; 3. 山东科技大学 矿山灾害预防控制省部共建国家重点实验室培育基地,山东 青岛 266590
  • 收稿日期:2018-11-14 修回日期:2019-05-05 出版日期:2020-01-13 发布日期:2020-01-05
  • 作者简介:鲁海峰,男,1983年生,博士,副教授,主要从事工程地质、岩土力学等领域的教学及科研工作。
  • 基金资助:
    安徽省教育厅2019年高校自然科学研究重大项目(KJ2019ZD11);国家自然科学基金项目(No. 41977253);安徽省高校优秀青年人才支撑计划项目(No.gxyq2017004);安徽理工大学煤矿安全高效开采省部共建教育部重点实验室开放基金(No.JYBSYS2014106)

Circular sliding solution of mining stability and failure depth of floor layered structure on coal face

LU Hai-feng1, 2, MENG Xiang-shuai2, YAN Wei3, YAO Duo-xi2   

  1. 1. Key Laboratory of Safety and High-efficiency Coal Mining, Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui 232001, China; 2. College of Earth and Environment, Anhui University of Science and Technology, Huainan, Anhui 232001, China; 3. State Key Laboratory of Mining Disaster Prevention and Control, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
  • Received:2018-11-14 Revised:2019-05-05 Online:2020-01-13 Published:2020-01-05
  • About author:First author: LU Hai-feng, male, (1983-), PhD, associate Professor. Research interest: engineering geology, rock and soil mechanics. E-mail: hflu@aust.edu.cn
  • Supported by:
    This work was supported by the Anhui Provincial Department of Education 2019 Major Projects in Natural Science(KJ2019ZD11), the National Natural Science Foundation of China (41977253), the University Excellent Youth Talent Projects of Anhui Province (gxyq2017004), and the Open Fund of Key Laboratory of Safety and High-efficiency Coal Mining, Ministry of Education, Anhui University of Science and Technology (JYBSYS2014106) .

摘要: 目前采场底板破坏深度的理论计算是将底板简化为弹性或塑性体进行分析,但没给出两种方法的应用条件,同时也不能处理层状结构底板。为此,将支承压力作用下的底板极限平衡破坏形式视为圆弧型滑动,运用瑞典条分法搜出危险滑面并获取稳定系数和滑面最大深度。借鉴地基基础设计规范,给出底板安全系数值。在此基础上,以均质软、硬岩底板为例,将计算结果与现有理论解以及弹塑性数值解进行对比。讨论了软硬岩组合以及岩层倾角等因素对底板稳定系数及滑面深度的影响规律。研究表明:硬岩底板以局部塑性破坏为主,稳定系数一般较高,可近似采用弹性解;软岩底板一般塑性区范围大,甚至出现塑性滑动,采用极限平衡法分析误差较小。软硬岩组合底板中,当硬岩厚度达到一定值后,可大幅增加底板稳定系数并控制底板塑性区范围。在工作面上部,高倾角底板易发生浅层滑动破坏,而下部则与之相反。实例应用表明,圆弧滑动解考虑了层状底板强度参数的非均一性以及可判断底板的破坏形式,与实际更为吻合。

关键词: 底板破坏, 层状岩体, 采动稳定, 圆弧滑动

Abstract: At present the theoretical calculation of the stope floor failure depth simplifies the floor as elastomer or plastomer for analysis. However, the application conditions for the two methods are not specified. Meanwhile, this calculation approach cannot reflect the layered structure of the stope floor. Therefore, the limit equilibrium failure mode of the floor under abutment pressure is regarded as a circular-arc sliding. The Swedish slice method is used to search for dangerous sliding surfaces and to obtain the stability coefficient as well as the maximum depth of the sliding surface. Based on the safety factor value given by the foundation design code, the homogeneous soft and hard rock floor is taken as an example for comparisons to be made between the calculation results with existing theoretical solutions and elastic-plastic numerical solutions. The article discusses the influence of several factors, such as slab combining soft and hard rocks and strata inclination on the base slab stability coefficient and sliding thickness. The research shows that the hard rock floor mainly experiences local plastic failure, and generally demonstrates high stability coefficient. Therefore, it can be solved with the elastic solution. The soft rock floor has large plastic zone, and can even involve plastic sliding phenomenon, it requires the use of limit equilibrium method to reduce errors. In slab combining soft and hard rock, when the thickness of the hard rock reaches a certain value, the base slab stability coefficient will be greatly increased and the plastic zone in the floor will be controlled. In the top region of the coal face, the floor with high dip angle can easily experience shallow sliding failure while the lower part undergoes opposite act. The application example shows that the circular sliding solution considers the non-uniformity of the strength parameters of layered floor and the floor’s failure mode, which is more consistent with the actual situation.

Key words: floor failure, layered rock mass, mining stability, circular sliding

中图分类号: 

  • TD 325
[1] 周建, 蔡露, 罗凌晖, 应宏伟, . 各向异性软土基坑抗隆起稳定极限平衡分析[J]. 岩土力学, 2019, 40(12): 4848-4856.
[2] 胡中华,徐奴文,戴 峰,顾功开,李 昂,杨 莹,. 乌东德水电站地下厂房层状岩体稳定性及变形机制[J]. , 2018, 39(10): 3794-3802.
[3] 黄琪嵩,程久龙, . 软硬互层岩体采场底板的应力分布及破坏特征研究[J]. , 2017, 38(S1): 36-42.
[4] 邓华锋,张小景,张恒宾,王晨玺杰,方景成,肖 瑶. 巴西劈裂法在层状岩体抗拉强度测试中的分析与讨论[J]. , 2016, 37(S2): 309-315.
[5] 韩昌瑞 ,白世伟 ,王玉朋 ,张东焕,. 层状岩体深埋长隧道锚杆支护优化设计[J]. , 2016, 37(S1): 409-414.
[6] 张勃阳,白海波,张 凯. 类陷落柱介质渗流突变机制试验研究[J]. , 2016, 37(3): 745-752.
[7] 梁冠亭 ,陈昌富 ,朱剑锋 ,肖淑君 , . 基于M-P法的抗滑桩支护边坡稳定性分析[J]. , 2015, 36(2): 451-456.
[8] 张玉军 ,张维庆,. 不同的层状岩体抗剪强度表达式计算效果的有限元分析[J]. , 2014, 35(S1): 359-364.
[9] 段宏飞. 底板破坏深度六因素线性预测模型[J]. , 2014, 35(11): 3323-3330.
[10] 左双英,叶明亮,唐晓玲,续建科,史文兵. 层状岩体地下洞室破坏模式数值模型及验证[J]. , 2013, 34(S1): 458-465.
[11] 邓东平,李 亮. 两种滑动面型式下边坡稳定性计算方法的研究[J]. , 2013, 34(2): 372-380.
[12] 张敦福 ,王相玉 ,朱家明 ,李术才 ,朱维申 . 偶应力对层状岩体结构面边界层效应的影响[J]. , 2012, 33(7): 2181-2188.
[13] 邓东平,李 亮,罗 伟. 地震荷载作用下土钉支护边坡稳定性拟静力分析[J]. , 2012, 33(6): 1787-1794.
[14] 张桂民 ,李银平 ,施锡林 ,杨春和 ,王李娟. 一种交互层状岩体模型材料制备方法及初步试验研究[J]. , 2011, 32(S2): 284-289.
[15] 刘自由,江学良,左文贵. 三维应力作用下岩体层面效应分析[J]. , 2010, 31(9): 2835-2839.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!