岩土力学 ›› 2020, Vol. 41 ›› Issue (4): 1455-1464.doi: 10.16285/j.rsm.2019.0661

• 测试技术 • 上一篇    

干耦合超声波检测及波初至的自动拾取

刘媛1,马祥华1,刘洋2,肖飞3,陈玉海4   

  1. 1. 北京科技大学 机械工程学院,北京 100083;2. 北京科技大学 土木与资源工程学院,北京 100083;3. 中国石油集团渤海钻探工程有限公司 塔里木钻井分公司,新疆 巴音郭楞 841000;4. 中国石油集团渤海钻探工程有限公司 管具技术服务分公司,河北 沧州 062552
  • 收稿日期:2019-04-04 修回日期:2019-07-22 出版日期:2020-04-11 发布日期:2020-07-02
  • 通讯作者: 马祥华,男,1962年生,学士,副教授,主要从事光机电系统检测控制与仿真。E-mail: maxh@ustb.edu.cn E-mail: s20170485@xs.ustb.edu.cn
  • 作者简介:刘媛,女,1994年生,硕士研究生,主要从事光机电系统检测控制与设计、硬件设计、FPGA设计与数值分析方面研究工作。
  • 基金资助:
    国家重点研发计划项目(No. 2016YFC0600703)

Dry coupled ultrasonic testing technology and automatic picking method for determination of arrival times

LIU Yuan1, MA Xiang-Hua1, LIU Yang2, XIAO Fei3, CHEN Yu-hai4   

  1. 1. School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China; 2. School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China; 3. Korla Drilling Engineering Company, CNPC Bohai Drilling Engineering Company Limited, Bayinguoleng, Xinjiang 841000, China; 4. Tubular Ware and Tools Technology Service Branch Company, Bohai Drill Engineering Company Limited, Cangzhou, Hebei 062552, China
  • Received:2019-04-04 Revised:2019-07-22 Online:2020-04-11 Published:2020-07-02
  • Supported by:
    This work was supported by the National Key R&D Program of China (2016YFC0600703).

摘要: 目前岩石力学参数测定,受限于探头及数据采集设备,多在实验室环境完成,同时,传统超声收发探头对接触面平整度要求较高,需要对岩石表面打磨处理,且需要涂抹导声糊。这些都极大限制了超声测量系统的应用范围。为实现对岩石钻孔内的长效监测,对声波发射、接收机制及岩石内超声信号的频域特性进行分析,通过AIC算法拾取波前初至,利用小波去噪和改进AIC法(NAIC)求波初至到达精确时间,研究了基于干耦合岩石内部参数测量系统,在岩石内部实现了超声信号的发射接收、信号瞬态触发、高速采集,并将最终结果通过无线方式传输至数据记录仪。分别对Φ50 mm×100 mm花岗岩及砂岩岩样进行了超声波传输参数测量,Φ114 mm×280 mm花岗岩岩样测量距离分别为150、200 mm,利用NAIC、STA/LTA、MER、ETA 4种算法对该数据进行处理,并与第三方仪器测定结果进行比较。结果表明:基于干耦合声波测速采集系统,对不同工作接触面适应性较好,数据误差在规范允许范围内。小波降噪适用于背景干扰少、频率范围集中的超声接收信号,在到时拾取方面,除STA/LTA外其余3种算法在去噪后的到时拾取精度均得到有效提高,其中尤以NAIC法最为明显,到时平均误差由1.21 ?s锐减至0.19 ?s。

关键词: 干耦合, 数字化采集, 小波降噪, 改进AIC法, 到时拾取

Abstract: At present, the determination of rock mechanical parameters is limited to the probe and data acquisition equipment, which can only be used in the laboratory environment. At the same time, the traditional ultrasonic transceivers have high requirements for the contact surface roughness. Therefore, there is a need to polish the rock surface, and to apply sound guide paste before the analysis. The aforementioned issues have greatly limited the scope of the application of ultrasonic measurement systems. In order to achieve long-term monitoring in rock boreholes, the sound wave emission and reception mechanism and the frequency domain characteristics of the ultrasonic signals in the rock were analyzed in this study. The wavefront first arrival was picked up by the AIC algorithm, and the wavelet denoising and the improved AIC method (NAIC) were utilized to find the exact wave arrival time, and the internal parameter measurement system based on dry coupling rock was studied. The ultrasonic signal transmission and reception, signal transient triggering, and high speed acquisition were achieved inside the rock, and the final result was wirelessly transmitted to the data recorder. Ultrasonic transmission parameters were measured for Φ50 mm×100 mm granite and sandstone rock samples. The measurement distances of Φ114 mm×280 mm granite rock samples were 150 mm and 200 mm with the use of NAIC, STA/LTA, MER and ETA algorithms. The data was processed and compared to the results of third party instrument measurements. The results show that the system based on dry coupling acoustic wave velocity measurement has good adaptability to different working contact surfaces, and the data error is within the allowable range of the specification. Wavelet denoising is suitable for ultrasonic receiving signals with less background interference and concentrated frequency range. In terms of picking-up, the other three algorithms except STA/LTA can effectively improve the pick-up accuracy after denoising. NAIC is the method with the most significant error reduction, and the average error is reduced from 1.21 ?s to 0.19 ?s.

Key words: dry coupling, digital acquisition, wavelet denoising, improved AIC algorithm, arrival time picking

中图分类号: 

  • TU 454
[1] 朱梦博, 王李管, 刘晓明, 彭平安, 赵嘉轩. 基于波形参数的微震P波到时拾取值质量控制方法[J]. 岩土力学, 2019, 40(2): 767-776.
[2] 李 明 ,陈卫忠,杨建平,. 隧道结构在线监测数据分析方法研究[J]. , 2016, 37(4): 1208-1217.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[2] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[3] 张明义,刘俊伟,于秀霞. 饱和软黏土地基静压管桩承载力时间效应试验研究[J]. , 2009, 30(10): 3005 -3008 .
[4] 康厚荣, ,雷明堂,张谢东,赵杰华. 贵州省公路工程岩溶环境区划[J]. , 2009, 30(10): 3032 -3036 .
[5] 吴 亮,钟冬望,卢文波. 空气间隔装药爆炸冲击荷载作用下混凝土损伤分析[J]. , 2009, 30(10): 3109 -3114 .
[6] 周晓杰,介玉新,李广信1. 基于渗流和管流耦合的管涌数值模拟[J]. , 2009, 30(10): 3154 -3158 .
[7] 吴昌瑜,张 伟,李思慎,朱国胜. 减压井机械淤堵机制与防治方法试验研究[J]. , 2009, 30(10): 3181 -3187 .
[8] 崔皓东,朱岳明. 二滩高拱坝坝基渗流场的反演分析[J]. , 2009, 30(10): 3194 -3199 .
[9] 贾宇峰,迟世春,林 皋. 考虑颗粒破碎影响的粗粒土本构模型[J]. , 2009, 30(11): 3261 -3266 .
[10] 倪骁慧,朱珍德,赵 杰,李道伟,冯夏庭. 岩石破裂全程数字化细观损伤力学试验研究[J]. , 2009, 30(11): 3283 -3290 .