岩土力学 ›› 2020, Vol. 41 ›› Issue (S1): 1-8.doi: 10.16285/j.rsm.2019.0865

• 基础理论与实验研究 •    下一篇

混合型缓冲砌块导热性能及其均匀性研究

张虎元1, 2,赵秉正2, 3,童艳梅2   

  1. 1. 兰州大学 西部灾害与环境力学教育部重点实验室,甘肃 兰州 730000;2. 兰州大学 土木工程与力学学院,甘肃 兰州 730000; 3. 西安电子科技大学 先进材料与纳米科技学院,陕西 西安 710000
  • 收稿日期:2019-05-14 修回日期:2019-08-29 出版日期:2020-06-19 发布日期:2020-06-04
  • 作者简介:张虎元,男,1963年生,博士,教授,博士生导师,主要从事与废弃物处置有关的环境岩土工程方面的教学与研究工作
  • 基金资助:
    国家自然科学基金项目(No.41672261);中央高校基本科研业务费专项(No.lzujbky-2016-k15,No.lzujbky-2017-ct02)。

Thermal conductivity and uniformity of hybrid buffer blocks

ZHANG Hu-yuan1, 2, ZHAO Bing-zheng2, 3, TONG Yan-mei2   

  1. 1. Key Laboratory of Mechanics on Disaster and Environment in Western China, the Ministry of Education, Lanzhou University, Lanzhou, Gansu 730000; China; 2. School of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000, China; 3. School of Advanced Materials and Nanotechnology, Xidian University, Xi’an, Shaanxi 710000, China
  • Received:2019-05-14 Revised:2019-08-29 Online:2020-06-19 Published:2020-06-04
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(41672261) and Foundation Research Funds of the Central Universities(lzujbky-2016-k15, lzujbky-2017-ct02).

摘要: 混合型缓冲砌块作为高放废物地质处置库的缓冲屏障具有良好的导热性能。将高庙子(GMZ)膨润土和标准石英砂混合,依据正交试验原则,控制掺砂率Rs = 30%,设置含水率变化为7.0%、11.0%、15.0%,干密度变化为1.60、1.70、1.80 g/cm3,采用半自动化液压机压制成大型缓冲砌块。对砌块进行切割分解,开展热传导试验,建立含水率和干密度与导热性能的关系,了解导热性能的空间分布特征。试验结果表明,随着含水率和干密度的增大,混合型缓冲砌块导热系数显著增大,大致呈线性关系,且平均值均大于国际原子能机构国际原子能机构(IAEA)推荐的导热系数下限值0.8 W/m?K,满足推荐要求;热扩散系数先略微减小再增大,总体也呈增大趋势。对混合型缓冲砌块导热系数的空间分布及均匀性分析发现,砌块四周边缘部位的导热系数比中间部位的波动略大,但总体差异性及非均匀性不明显。采用t检验法对混合型缓冲砌块导热系数均匀性进行检验,发现砌块满足均匀性检验条件,试样均匀。用Johansen模型从物理指标可以预测混合型缓冲砌块的导热系数,偏差在±10%以内。

关键词: 高放废物(HLW), 地质处置, 缓冲砌块, 膨润土?砂混合物, 导热性能

Abstract: The hybrid buffer block as a buffer barrier requires good thermal conductivity for geological storage of high-level waste (HLW). In this study, Gaomiaozi (GMZ) bentonite was mixed with standard quartz sand, and the sand mixing rate Rs was controlled at 30% according to the orthogonal test principle. The moisture contents were set at 7.0%, 11.0%, and 15.0%, and dry densities were set at 1.60, 1.70 and 1.80 g/cm3, respectively. A large buffer block was pressed with a semi-automatic hydraulic press. The heat transfer test was conducted on the cut and decomposed block. The relationship among the moisture content, dry density and thermal conductivity was established, and the spatial distribution characteristics of thermal conductivity were analyzed. Test results show that the thermal conductivity of buffer blocks increase linearly with the increases in water contents and dry densities. The mean value of thermal conductivity more than 0.8 W/m ? K satisfies the requirement recommended by International Atomic Energy Agency(IAEA). The thermal diffusion coefficient slightly decreases first and then increases, and the overall trend also increases. The spatial distribution and uniformity of the thermal conductivity of the hybrid buffer block were also analyzed. It is found that the thermal conductivity of the block edge fluctuates larger than that of the middle part, but the overall difference and non-uniformity are not obvious. The t-test method was used to test the uniformity of thermal conductivity of the hybrid buffer block. The test results show the block satisfies the uniformity test condition and the sample is uniform. Data analysis shows that the thermal conductivity of the hybrid buffer block can be predicted from the physical index using the Johansen model with a deviation of ±10%.

Key words: high-level waste(HLW), geological disposal, buffer block, bentonite-sand mixtures, thermal conductivity

中图分类号: 

  • TU443
[1] 谢敬礼,马利科,高玉峰,曹胜飞,刘月妙. 北山花岗岩岩屑-膨润土混合材料导热性能研究[J]. , 2018, 39(8): 2823-2828.
[2] 陈世万,杨春和,王贵宾,李二兵,陈 亮,. 北山坑探设施开挖损伤区现场声发射监测试验研究[J]. , 2017, 38(S2): 349-358.
[3] 陈志国,唐朝生,叶为民,王德银,王 鹏,孙凯强,施 斌,. 水-力耦合条件下膨润土-砂混合物的体变特性研究[J]. , 2017, 38(4): 1041-1051.
[4] 李鹏飞 ,赵星光 ,蔡美峰 , . 压缩条件下岩石启裂应力的识别方法探讨 ——以新疆天湖花岗闪长岩为例[J]. , 2015, 36(8): 2323-2331.
[5] 周 嵩 ,陈益峰 ,张 勤 ,郑华康 ,周创兵 , . 非饱和膨润土的有效热传导特性模型[J]. , 2014, 35(4): 1041-1048.
[6] 宗自华 ,陈 亮 ,,陈 强 ,魏云杰 ,王锡勇 ,王 驹 . 高放废物处置北山预选区地表岩体结构与岩体质量相关性及其应用研究[J]. , 2013, 34(S1): 279-284.
[7] 刘月妙,王 驹,曹胜飞,马利科 ,谢敬礼,赵星光,陈 亮. 中国高放废物地质处置缓冲材料大型试验台架和热-水-力-化学耦合性能研究[J]. , 2013, 34(10): 2756-2762.
[8] 牛文杰,叶为民,陈 宝. 高压实膨润土的非饱和渗透膨胀模型[J]. , 2009, 30(S2): 88-92.
[9] 张玉军. 核废物地质处置中热-水-应力耦合对迁移影响的三维有限元模拟[J]. , 2009, 30(7): 2126-2132.
[10] 张玉军. 孔隙气压对核废物地质处置热-流-固耦合影响的有限元分析[J]. , 2009, 30(5): 1451-1457.
[11] 张玉军. 考虑溶质浓度影响的热-水-应力-迁移耦合模型及数值模拟[J]. , 2008, 29(1): 212-218.
[12] 张玉军. 核废物地质处置模型试验近场热-水-应力耦合数值模拟[J]. , 2007, 28(12): 2489-2494.
[13] 罗嗣海 ,钱七虎 ,李金轩 ,周文斌 , . 高放废物深地质处置中的多场耦合与核素迁移[J]. , 2005, 26(S1): 264-270.
[14] 庄迎春 ,谢康和 ,孙友宏,. 砂土混合材料导热性能的试验研究[J]. , 2005, 26(2): 261-264.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!