岩土力学 ›› 2020, Vol. 41 ›› Issue (8): 2693-2702.doi: 10.16285/j.rsm.2019.1590

• 基础理论与实验研究 • 上一篇    下一篇

酸雨水化学损伤加剧粉砂质泥岩崩解机制研究

李昆鹏,赵晓彦,肖 典,李 晋   

  1. 西南交通大学 地质工程系,四川 成都 610031
  • 收稿日期:2019-09-16 修回日期:2019-12-02 出版日期:2020-08-14 发布日期:2020-10-18
  • 通讯作者: 赵晓彦,男,1977年生,博士,博士后,教授,博导,主要从事地质灾害与防治工程方面的研究工作。E-mail: xyzhao2@swjtu.edu.cn E-mail:kunpeng_lee@163.com
  • 作者简介:李昆鹏,男,1995年生,硕士研究生,主要从事环境岩土及边坡加固方面研究。
  • 基金资助:
    国家自然科学基金(No. 41672295);中国铁路总公司系统性重大项目(No. P2018G047);四川省科技计划项目(No. 2017JY0264)。

Mechanism of silty mudstone slaking aggravated by acid rain-induced chemical damage

LI Kun-peng, ZHAO Xiao-yan, XIAO Dian, LI Jin   

  1. Department of Geology Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
  • Received:2019-09-16 Revised:2019-12-02 Online:2020-08-14 Published:2020-10-18
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (41672295), the Major Systematic Projects of China Railway Corporation (P2018G047) and the Sichuan Provincial Science and Technology Plan Project (2017JY0264).

摘要: 酸雨区泥质岩崩解相对于非酸雨区显著增强,但其机制尚有待进一步研究。以酸雨条件下水化学损伤的形成及其发展特性入手,选取典型酸雨区攀枝花市机场滑坡粉砂质泥岩,进行不同pH值条件下(pH=7、5、3)的耐崩解性试验。通过测定试验后崩解液离子成分变化、观察酸雨作用前后粉砂质泥岩薄片镜下特征、分析试样崩解破坏模式,探究酸雨水化学损伤加剧粉砂质泥岩崩解的细观机制;引入比表面积增量指标表征崩解残留物破碎程度,定量评价酸雨水化学损伤对粉砂质泥岩崩解的加剧效果。研究结果认为,粉砂质泥岩酸雨水化学损伤主要源于特定矿物的溶蚀,为其崩解劣化提供额外路径;随着崩解液pH值降低,粉砂质泥岩水化学损伤增强,崩解路径增多,崩解破坏模式发生转化,崩解残留物愈发破碎;采用比表面积增量指标可良好反映崩解残留物的破碎程度,崩解残留物愈破碎,比表面积增量指标值越大,粉砂质泥岩崩解程度越高。结论可为酸雨地区岩土体工程性质评价及加固设计提供理论参考。

关键词: 酸雨, 崩解, 酸雨水化学损伤, 比表面积增量, 粉砂质泥岩

Abstract: Slaking of mudstone in acid rain area is significantly stronger than that in non-acid rain area, and the slaking mechanism needs to be studied. Based on the formation and development characteristics of hydro-chemical coupled damage under acid rain, this paper took a landslide at Panzhihua city airport as an example, which is in a typical acid rain area. Silty mudstone rock samples located in the sliding zone were selected and processed. After that, a series of slaking experiments was comparatively carried out under different pH conditions. In order to explore the micro-mechanism of acid rain-aggravated slaking behavior of silty mudstone, we adopted a series of analytical methods, including analyzing cation composition changes in different pH slaking fluids, observing micro-structure change of samples before and after acid rain treatment as well as analyzing slaking failure modes of silty mudstone. Finally, an index named specific surface area increment index was introduced to reflect the impacts of acid rain-induced chemical damage on slaking behavior of silty mudstone. The results highlight that: the acid rain-induced chemical damage in silty mudstone was mainly caused by the dissolution of specific minerals, which provided extra paths for the slaking of silty mudstone. With the decrease of pH value of slaking fluid, the acid rain-induced chemical damage of silty mudstone increased, the slaking paths increased, the slaking failure mode changed, and the slaking residues were broken into finer fragments. The specific surface area increment index could well capture the fragmentation degree of slaking residuals. The more breaking the slaking residuals, the higher the specific surface area increment index, and the greater the slaking degree of silty mudstone. Conclusions of this paper provide theoretical reference for the evaluation of geotechnical engineering properties and reinforcement design in acid rain areas.

Key words: acid rain, slaking, acid rain-chemical damage, specific surface area increment, silty mudstone

中图分类号: 

  • TU 42
[1] 张宗堂, 高文华, 张志敏, 唐骁宇, 邬俊, . 基于Weibull分布的红砂岩颗粒崩解破碎演化规律[J]. 岩土力学, 2020, 41(3): 877-885.
[2] 付宏渊, 蒋煌斌, 邱祥, 姬云鹏, . 低应力与覆水环境下单裂隙粉砂质泥岩渗流特性[J]. 岩土力学, 2020, 41(12): 3840-3850.
[3] 李国维, 施赛杰, 侯宇宙, 吴建涛, 李 峰, 吴少甫, . 引江济淮试验工程非膨胀土开发技术实验研究[J]. 岩土力学, 2018, 39(S2): 302-314.
[4] 曾志雄,孔令伟,田 海,李聚昭. 膨胀岩崩解特性的干湿循环效应与粒度熵表征[J]. , 2017, 38(7): 1983-1989.
[5] 申培武,唐辉明,汪丁建,何 成,张雅慧. 巴东组紫红色泥岩干湿循环崩解特征试验研究[J]. , 2017, 38(7): 1990-1998.
[6] 潘 艺,刘 镇,周翠英, . 红层软岩遇水崩解特性试验及其界面模型[J]. , 2017, 38(11): 3231-3239.
[7] 黄 明,詹金武. 酸碱溶液环境中软岩的崩解试验及能量耗散特征研究[J]. , 2015, 36(9): 2607-2612.
[8] 谈云志 ,喻 波 ,戴光柏 ,王乐华 ,付 伟,. 绢云母片岩路基填料最大填筑粒径确定方法[J]. , 2015, 36(1): 137-142.
[9] 张 抒,唐辉明. 非饱和花岗岩残积土崩解机制试验研究[J]. , 2013, 34(6): 1668-1674.
[10] 张 巍 ,尚彦军 ,曲永新 ,孙元春 ,林达明 ,王开洋 . 泥质膨胀岩崩解物粒径分布与膨胀性关系试验研究[J]. , 2013, 34(1): 66-72.
[11] 张 丹 ,陈安强 ,刘刚才 . 紫色泥岩水热条件下崩解过程的分维特性[J]. , 2012, 33(5): 1341-1346.
[12] 王菁莪 ,项 伟 ,毕仁能. 基质吸力对非饱和重塑黄土崩解性影响试验研究[J]. , 2011, 32(11): 3258-3262.
[13] 刘晓明,赵明华,苏永华. 软岩崩解分形机制的数学模拟[J]. , 2008, 29(8): 2043-2046.
[14] 陈 强,陈炜韬. 厦门海底隧道类土质围岩水土作用研究[J]. , 2008, 29(10): 2623-2626.
[15] 吴益平,余宏明,胡艳新. 巴东新城区紫红色泥岩工程地质性质研究[J]. , 2006, 27(7): 1201-1203.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[2] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[3] 王淑云,鲁晓兵,赵 京,王爱兰. 粉质黏土周期荷载后的不排水强度衰化特性[J]. , 2009, 30(10): 2991 -2995 .
[4] 张明义,刘俊伟,于秀霞. 饱和软黏土地基静压管桩承载力时间效应试验研究[J]. , 2009, 30(10): 3005 -3008 .
[5] 吴 亮,钟冬望,卢文波. 空气间隔装药爆炸冲击荷载作用下混凝土损伤分析[J]. , 2009, 30(10): 3109 -3114 .
[6] 周晓杰,介玉新,李广信1. 基于渗流和管流耦合的管涌数值模拟[J]. , 2009, 30(10): 3154 -3158 .
[7] 吴昌瑜,张 伟,李思慎,朱国胜. 减压井机械淤堵机制与防治方法试验研究[J]. , 2009, 30(10): 3181 -3187 .
[8] 崔皓东,朱岳明. 二滩高拱坝坝基渗流场的反演分析[J]. , 2009, 30(10): 3194 -3199 .
[9] 徐 晗,黄 斌,饶锡保,何晓民,徐言勇. 三轴试样钻孔灌砂固结排水效果试验研究[J]. , 2009, 30(11): 3242 -3248 .
[10] 贾宇峰,迟世春,林 皋. 考虑颗粒破碎影响的粗粒土本构模型[J]. , 2009, 30(11): 3261 -3266 .