岩土力学 ›› 2021, Vol. 42 ›› Issue (2): 574-580.doi: 10.16285/j.rsm.2020.0742

• 数值分析 • 上一篇    下一篇

一种基坑降水影响半径的有限元计算方法

厉立兵1,侯兴民2,李远东3   

  1. 1.南京水利科学研究院 岩土工程研究所,江苏 南京 210024;2. 烟台大学 土木工程学院,山东 烟台 264005; 3. 南京工业大学 交通学院,江苏 南京 210009
  • 收稿日期:2020-05-31 修回日期:2020-11-26 出版日期:2021-02-10 发布日期:2021-02-09
  • 通讯作者: 侯兴民,男,1970年生,博士,教授,主要从事岩土工程方面的工作。E-mail: houxm@ytu.edu.cn E-mail:lilibing03@163.com
  • 作者简介:厉立兵,男,1992年生,博士研究生,主要从事岩土工程方面的研究。
  • 基金资助:
    国家自然科学基金(No. 41602284);中央级公益性科研院所基金基本科研业务费项目(No.Y319006,No.Y320010)

A finite element method for calculating the influence radius of foundation pit dewatering

LI Li-bing1, HOU Xing-min2, LI Yuan-dong3   

  1. 1. Geotechnical Engineering Department, Nanjing Hydraulic Research Institute, Nanjing, Jiangsu 210024, China; 2. School of Civil Engineering, Yantai University, Yantai, Shandong 264005, China; 3. School of Transportation, Nanjing University of Technology, Nanjing, Jiangsu 210009, China
  • Received:2020-05-31 Revised:2020-11-26 Online:2021-02-10 Published:2021-02-09
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(41602284) and the Funds for Basic Scientific Research Operations of Central Public Welfare Scientific Research Institutes(Y319006, Y320010).

摘要: 基坑降水总涌水量的计算是基坑降水方案设计的关键环节,影响半径是基坑降水总涌水量的重要参数。目前工程上通常采用经验公式、经验值及图解法估算影响半径。经验公式仅考虑井中水位降深和渗透系数对影响半径计算的影响,对其他影响因素考虑较少;图解法受测量及绘图误差的影响较大。为此提出了一种基于实域总势能极小原理计算影响半径的有限单元法:当井壁达到控制水位时,将地下水原始稳定水位、降水井水位、控制水位与降水井水位之间的出渗段(水跃区段)以及影响半径分别看作上游边界水头、下游边界水头、逸出边界、渗流场的水平尺寸,求解影响半径便可简化成已知上游边界水头、下游边界水头及逸出边界,求解模型水平尺寸的问题。通过求解工程算例表明,该方法较现场抽水试验结果及经验公式可精确地计算出影响半径。该研究成果可提高基坑降水总涌水量计算的准确性,使基坑降水设计方案更完善,具有潜在的工程应用价值。

关键词: 基坑降水设计, 影响半径, 实域总势能极小原理

Abstract: The calculation of total water inflow of foundation pit is the key of a foundation pit dewatering scheme. In this scheme, influence radius is a parameter of great importance. At present, empirical formulas, empirical values and graphic methods are usually used to estimate the influence radius in the industry. The empirical formula takes the permeability coefficient and drawdown of dewatering well as the main factors to determine the influence radius, while it takes less consideration of other influencing factors into account. The measurement and drawing errors existing in graphic method have great influence on the results. In this paper, a finite element method is proposed to calculate the influence radius based on the principle of minimum total potential energy in the real domain. When the water level of well reaches the control level, taking the original stable water level of the groundwater as the upstream hydraulic head, the water level of the dewatering well as the downstream hydraulic head, the water leaping zone between the control water level and the water level of the well as the escape boundary, and the influence radius as the horizontal distance of seepage field, the calculation of the influence radius can be simplified to the calculation of the horizontal size of the model with the upstream boundary head, the downstream boundary head and the escape boundary known. Two engineering scenarios were calculated using this method. Results obtained were compared with the results of field pumping tests and empirical formula solutions. The results show that the algorithm in this paper can accurately calculate the influence radius. The outcome of this research can be used to improve the calculation accuracy of foundation pit water inflow, make the design of foundation pit dewatering more reasonable, and have potential engineering application value.

Key words: dewatering design of a foundation pit, influence radius, principle of minimum total potential energy in the real domain

中图分类号: 

  • TV 139.14
[1] 焦 莹. 常规越流承压含水层影响半径计算方法之改进[J]. , 2008, 29(10): 2779-2782.
[2] 吴起星 ,田管凤, . 竖直受力桩的影响半径rm讨论[J]. , 2004, 25(12): 2028-2032.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[4] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[5] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[6] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[7] 卢 正,姚海林,骆行文,胡梦玲. 公路交通荷载作用下分层地基的三维动响应分析[J]. , 2009, 30(10): 2965 -2970 .
[8] 孙 勇. 滑坡面下双排抗滑结构的计算方法研究[J]. , 2009, 30(10): 2971 -2977 .
[9] 楚锡华,徐远杰. 基于形状改变比能对M-C准则与 D-P系列准则匹配关系的研究[J]. , 2009, 30(10): 2985 -2990 .
[10] 李 磊,朱 伟 ,林 城,大木宜章. 干湿循环条件下固化污泥的物理稳定性研究[J]. , 2009, 30(10): 3001 -3004 .