岩土力学 ›› 2021, Vol. 42 ›› Issue (2): 333-342.doi: 10.16285/j.rsm.2020.0889

• 基础理论与实验研究 • 上一篇    下一篇

基于脲酶诱导碳酸钙沉积的微生物矿化技术 在分散性土改良中应用的试验研究

李驰1,史冠宇1,武慧敏2,王翠艳3,高瑜1   

  1. 1. 内蒙古工业大学 土木工程学院,内蒙古 呼和浩特 010051;2. 内蒙古自治区水利水电勘测设计院,内蒙古 呼和浩特 010021; 3.内蒙古工业大学 化工学院,内蒙古 呼和浩特 010051
  • 收稿日期:2020-06-24 修回日期:2020-11-18 出版日期:2021-02-10 发布日期:2021-02-09
  • 作者简介:李驰,女,1973年生,博士,教授,主要从事生物岩土工程及特殊土改良与加固方面的教学与研究工作。
  • 基金资助:
    国家自然科学基金(No. 51668050,No. 51968057);内蒙自然科学基金(No. 2019MS05075,No. 2019MS05072,No. 2019MS05059)

Experimental study on bio-mineralization for dispersed soil improvement based on enzyme induced calcite precipitate technology

LI Chi1, SHI Guan-yu1, WU Hui-min2, WANG Cui-yan3, GAO Yu1   

  1. 1. Department of Civil Engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia 010051, China; 2. Inner Mongolia Water Conservancy and Hydropower Survey and Design Institute, Hohhot, Inner Mongolia 010021, China; 3. Department of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia 010051, China
  • Received:2020-06-24 Revised:2020-11-18 Online:2021-02-10 Published:2021-02-09
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51668050, 51968057) and the Natural Science Foundation of Inner Mongolia Autonomous Region of China(2019MS05075, 2019MS05072, 2019MS05059).

摘要: 将基于脲酶诱导碳酸钙沉积(EICP)的微生物矿化技术运用于分散性土的改良。以内蒙古呼伦贝尔某水库工程的筑坝土料作为岩土基质,通过针孔试验、双密度计试验和碎块试验,对微生物矿化改良前后的土样进行分散性试验鉴定和评价。试验结果显示,经过微生物矿化改良后的土样抗分散能力明显增强,特别是以脲酶溶液制备的微生物改性剂,改良后土样在针孔试验中经历了50、180、380 mm以及1 020 mm的水头后,流出水始终保持清澈透明的状态,且出水口平整;针孔尺寸保持不变,收集针孔试验后的土样进行碎块试验,未出现胶粒的分散状况。双密度计试验中测得经脲酶溶液改良后土样的分散度低于30%,较原土样的分散度降低约50%,土样由分散性转变为非分散性;经微生物菌液改良后土样的分散度为41.1%,较原土样的分散度降低22%,土样由分散性转变为过渡性。以脲酶溶液制备的微生物改性剂,在粒径细小的黏性土中发挥矿化作用更加充分,就分散性土的改良和提高抗分散能力而言,优于以微生物菌液制备的微生物改性剂。首次将脲酶诱导碳酸钙沉积(EICP)技术应用于分散性土的改良,这是绿色微生物矿化技术与水利筑坝材料改良相结合的创新,在筑坝填料分散性土的改良中有着良好的应用前景。

关键词: 微生物矿化技术, 脲酶诱导碳酸钙沉积(EICP)技术, 分散性土, 脲酶, 针孔试验, 分散度

Abstract: Enzyme induced calcite precipitation (EICP) technology is applied to mineralize dispersed soil and improve dispersion resistance. The dispersed soil was sampled from a dam filler of reservoir in Hulunbuir, Inner Mongolia, and acted as parent soil during mineralization process. The dispersion of the soil sample before and after bio-mineralization was identified and evaluated by pinhole test, double hydrometer test and broken soil test. The results showed that the anti-dispersion ability of soil improved by bio-mineralization was significantly enhanced, especially by the microbial modifier prepared by urease solution. When the improved soil samples experienced 50, 180, 380 mm and 1 020 mm water heads in the pinhole test, the outflow water always remained clear and transparent, the water outlet was flat, and the size of the pinhole remained unchanged. The soil samples after the pinhole test were collected for broken soil test, and there was no colloidal particle dispersion during the test. During the double hydrometer test, it was found that the dispersity of soil samples improved by urease solution was less than 30%, which was reduced by about 50% compared to that of the unimproved dispersed soil, and the properties of soil sample changed from dispersive to non-dispersive. But for soil samples improved by microbial solution, the dispersity was 41.1%, which was 22% lower than that of the unimproved dispersed soil, the properties of soil sample changed from dispersive to transitional. The microbial modifier prepared by urease solution played a more adequate role in the mineralization process for fine-grained soil, and it was superior to the microbial modifier prepared by microbial solution in terms of the improvement of dispersed soil modification and the anti-dispersion ability improvement. In this paper, it is the first time that the bio-mineralization base on EICP technology was applied to the improvement of dispersed soil. This is an innovation combining green bio-mineralization technology with dispersed soil improvement in water conservancy damming engineering. It has a good application prospect in improving the dispersed soil of damming filler.

Key words: Bio-mineralization, Enzyme induced calcite precipitation (EICP) technology, dispersed soil, urease, pinhole test, dispersity

中图分类号: 

  • TU 470
[1] 史 祥,樊恒辉,刘 刚,李 普,章润红. 分散性土蠕变特性试验研究[J]. , 2017, 38(4): 1015-1022.
[2] 唐自强,党进谦,樊恒辉,李凌芸. 分散性土的抗剪强度特性试验研究[J]. , 2014, 299(2): 435-440.
[3] 赵高文 ,樊恒辉 ,陈 华 ,路立娜 ,石 美, . 基于黏性土分散机制的分散性土化学改性研究[J]. , 2013, 34(S2): 210-213.
[4] 孙仲林,党进谦,樊恒辉,王 飞. 分散性土动剪切模量影响因素的试验研究[J]. , 2012, 33(12): 3669-3673.
[5] 樊恒辉,孔令伟,李洪良,卢雪清,尹培杰. 马家树水库大坝防渗土料分散性判别和改性试验[J]. , 2010, 31(1): 193-198.
[6] 陈中学,汪 稔,胡明鉴,魏厚振,王新志. 云南东川蒋家沟泥石流形成内因初探[J]. , 2009, 30(10): 3053-3056.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[3] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[4] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[5] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[6] 卢 正,姚海林,骆行文,胡梦玲. 公路交通荷载作用下分层地基的三维动响应分析[J]. , 2009, 30(10): 2965 -2970 .
[7] 孙 勇. 滑坡面下双排抗滑结构的计算方法研究[J]. , 2009, 30(10): 2971 -2977 .
[8] 楚锡华,徐远杰. 基于形状改变比能对M-C准则与 D-P系列准则匹配关系的研究[J]. , 2009, 30(10): 2985 -2990 .
[9] 王淑云,鲁晓兵,赵 京,王爱兰. 粉质黏土周期荷载后的不排水强度衰化特性[J]. , 2009, 30(10): 2991 -2995 .
[10] 李 磊,朱 伟 ,林 城,大木宜章. 干湿循环条件下固化污泥的物理稳定性研究[J]. , 2009, 30(10): 3001 -3004 .