岩土力学 ›› 2022, Vol. 43 ›› Issue (S1): 553-566.doi: 10.16285/j.rsm.2021.0246

• 数值分析 • 上一篇    下一篇

基于BIM技术的地铁基坑工程施工仿真模拟方法

吴佳明1, 2, 3, 4,陈健1, 2, 4, 5,陈国良1, 2,钟宇6,   

  1. 1. 中国科学院武汉岩土力学研究所 岩土力学与工程国家重点实验室,湖北 武汉 430071;2. 中国科学院大学,北京 100049; 3. 中铁第四勘察设计研究院有限公司,湖北 武汉 430063;4. 水下隧道技术国家地方联合工程研究中心,湖北 武汉 430063; 5. 岩土力学与工程国家重点实验室宁波工程学院工程软土实验中心,浙江 宁波 315211; 6. 武汉地铁集团有限公司,湖北 武汉 430070;7. 中国建筑国际集团有限公司,香港 999077
  • 收稿日期:2021-02-08 修回日期:2022-03-01 出版日期:2022-06-30 发布日期:2022-07-15
  • 通讯作者: 陈健,男,1972年生,博士,研究员,博士生导师,主要从事岩土工程随机场理论分析和风险评价方面的研究工作。E-mail: jchen@whrsm.ac.cn E-mail:1345233582@qq.com
  • 作者简介:吴佳明,男,1993年生,博士研究生,主要从事BIM技术在岩土工程中的应用研究工作。
  • 基金资助:
    国家自然科学基金(No.52079135,No.51909259);中国科学院国际合作局国际伙伴计划(No.131551KYSB20180042);中国建筑国际集团有限公司的科技研发项目(No.CSCI-2020-Z-21);宁波市公益类科技计划项目(No.2019C50012)。

Construction simulation method of metro foundation pit based on BIM technology

WU Jia-ming1, 2, 3, 4, CHEN Jian1, 2, 4, 5, CHEN Guo-liang1, 2, ZHONG Yu6, DAI Lin-fa-bao3, 4, CHEN Bin5, WU Zhe7   

  1. 1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. China Railway Siyuan Survey and Design Group Co., Ltd., Wuhan, Hubei 430063, China; 4. National-Local Joint Engineering Research Center of Underwater Tunnelling Technology, Wuhan, Hubei 430063, China; 5. The Soft Soil Research Center in Ningbo University of Technology, State Key Laboratory of Geomechanics and Geotechnical Engineering, Ningbo, Zhejiang 315211, China; 6. Wuhan Metro Group Co., Ltd., Wuhan, Hubei 430070, China; 7. China State Construction International Holdings Limited, Hong Kong 999077, Chin
  • Received:2021-02-08 Revised:2022-03-01 Online:2022-06-30 Published:2022-07-15
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (52079135, 51909259), the International Partnership Program of Chinese Academy of Sciences (131551KYSB20180042), the Science and Technology R&D Project of China State Construction International Holdings Limited (CSCI-2020-Z-21) and the Ningbo Public Welfare Science and Technology Planning Project (2019C50012).

摘要: 如何在地铁基坑施工过程中充分利用复杂地质和工程结构的多源异构信息,实现施工数字化建造是地铁工程建设中的一个难题。通过提出建筑信息模型(BIM)定制化思路,有效集成工程结构体和岩土体模型,建立岩土体开挖与结构体施作同步进行的基坑施工仿真模拟方法,来解决这一难题。采用工业基础类(IFC)标准,分别针对地质体和工程结构进行扩展和定义,构建基于IFC标准的基坑工程基础数据体系。在Autodesk软件平台上,研发基坑结构构件库和参数化构件建模技术,创建自定义的基坑结构建模插件。构建基于钻孔数据的三维地质建模方法,建立面向施工过程的地质模型动态剖切方法,将地质模型离散划分不同开挖阶段的三维地质块体,形成基坑分阶段施工三维地质模型。在此基础上,研究地质体与结构体融合的拓扑重构算法,构建基坑多阶段开挖一体化集成BIM模型,动态加载施工进度信息,形成基于BIM技术的地铁基坑工程施工仿真模型和模拟方法。最后,通过工程实例展示所提出的仿真模拟方法的可行性与有效性。

关键词: 地铁基坑工程, 建筑信息模型(BIM), 工业基础类(IFC), 一体化集成, 施工模拟

Abstract: How to make full use of the multi-source heterogeneous information of complex geology and engineering structure in the process of metro foundation pit construction to realize the construction digital fabrication is a difficult problem in metro engineering construction. In this paper, an idea of building information modeling (BIM) customization is proposed to solve this problem by effectively integrating engineering structure model and geological model, and establishing the foundation pit construction simulation method of dynamic coupling between earthwork excavation and retaining structure construction. Using industry foundation classes (IFC) standard, the geological body and engineering structure are extended and defined respectively, and the data system of foundation pit engineering based on IFC standard is constructed. Based on the Autodesk software platform, the foundation pit structure component library and parametric component modeling technology are developed to create a plug-in foundation pit structure modeling module. The three-dimensional (3D) geological modeling method based on borehole data is established, and a dynamic cutting method of geological model for the construction process simulation is established. The geological model is divided into 3D blocks at different excavation stages, and the 3D multi-phase geological model is formed. On this basis, the topology is reconstructed and the geological body and retaining structure are integrated; the multi-stage excavation BIM model is thus constructed. By dynamically loading construction schedule and time information on the integrated multi-stage model, the construction simulation method of metro foundation pit engineering based on BIM technology is then developed. Finally, the feasibility and effectiveness of the proposed simulation method are demonstrated through an engineering example.

Key words: metro foundation pit engineering, building information modelling(BIM), industry foundation classes(IFC), integration and sharing, construction simulation

中图分类号: 

  • TU717
[1] 于 宁,朱合华. 盾构施工仿真及其相邻影响的数值分析[J]. , 2004, 25(2): 292-296.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .