岩土力学 ›› 2022, Vol. 43 ›› Issue (S2): 508-523.doi: 10.16285/j.rsm.2021.0701

• 数值分析 • 上一篇    下一篇

水平层状软弱围岩破裂碎胀大变形机制 有限元−离散元耦合数值模拟研究

邓鹏海1,刘泉声1,黄兴2,潘玉丛1,伯音1   

  1. 1. 武汉大学 土木建筑工程学院,湖北 武汉 430072;2. 中国科学院武汉岩土力学研究所 岩土力学与工程国家重点实验室,湖北 武汉 430071
  • 收稿日期:2021-05-09 修回日期:2021-08-04 出版日期:2022-10-10 发布日期:2022-10-10
  • 作者简介:邓鹏海,男,1990年生,博士,副研究员,主要从事岩土工程FDEM数值模拟方面的研究。
  • 基金资助:
    国家自然科学基金资助项目(No.41941018)。

Combined finite-discrete element numerical study on the buckling failure mechanism of horizontally layered soft rock mass

DENG Peng-hai1, LIU Quan-sheng1, HUANG Xing2, PAN Yu-cong1, BO Yin1   

  1. 1. School of Civil Engineering, Wuhan University, Wuhan, Hubei 430072, China; 2. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
  • Received:2021-05-09 Revised:2021-08-04 Online:2022-10-10 Published:2022-10-10
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (41941018).

摘要: 在层状岩体中掘进隧洞后,围岩破裂碎胀大变形机制与各向同性围岩存在很大差异。对于无支护隧洞而言,其破裂模式可归结为复合破裂、V型凹槽破裂和层间剥落,不同破裂模式受控于岩体自身物理力学特性、地应力和隧洞断面形状等因素。采用有限元−离散元法(finite-discrete element method,简称 FDEM)耦合数值模拟研究了水平层状围岩破裂碎胀大变形机制,并研究了岩体强度参数(如黏聚力、内摩擦系数和抗拉强度)、变形参数(如弹性模量)、地应力和隧洞跨度对水平层状围岩破裂模式的影响。研究结果表明,复合破裂为层状岩体基本破裂模式,其机制为水平集中应力产生的共轭剪切裂隙 F3 在隧洞中心线附近不断向围岩深处扩展,同时产生平行于层理面的剪切滑移裂隙F1,由此产生中央破碎、两端相对完整的板块岩块;左右两侧板状岩块相互挤压向隧洞内翻转运动产生垂直层理面的拉伸裂隙 F2。随着岩体强度的升高、侧压系数的增大或隧洞跨度的减小,F1裂隙消失、F2 裂隙与层理面斜交,从而产生 V 型凹槽破裂。当岩体强度进一步升高或侧压系数进一步增大时,F3 裂隙在层理面交界处受阻,进而产生了层间剥落破裂。

关键词: 水平层状岩体, 破裂碎胀大变形, FDEM数值模拟, 围岩破裂模式, 圆形隧洞

Abstract: For the tunnel excavated in layered rock mass, the failure mechanism of surrounding rocks is different from that of isotropic surrounding rocks. For unsupported tunnel, the failure mode can be summarized into mixed failure, V-shaped notch breakout failure and spalling of bedding. The failure modes are controlled by multiple factors such as the physico-mechanical properties of the rock mass, in situ stress, and the shape of the tunnel. In this study, the combined finite-discrete element method (FDEM) is used to understand the failure mechanism of horizontally layered rock mass, including the influences of strength parameters (such as cohesion, internal friction coefficient and tensile strength), deformation parameters (such as Young’s modulus), in situ stress and tunnel span. The study results show that the mixed failure is the basic failure mode of the layered rock mass, and its failure mechanism is the conjugate shear fractures F3 generated by the horizontally concentrated stress continuously propagate into the surrounding rocks near the centerline of tunnel; at the same time, shear-slip fractures F1 parallel to the bedding plane are generated, resulting in slab-like rock fragments. The tensile fractures F2 perpendicular to the bedding plane are generated due to the contact squeezing effect between the left and right slab-like rock fragments and thus flip to the tunnel. With the increase of the rock mass strength, the increase of the lateral pressure coefficient or the decrease of the tunnel span, the fractures F1 disappear, and the fractures F2 are oblique to the bedding plane, resulting in V-shaped notch breakout. When the rock mass strength or the lateral pressure coefficient is further increased, the fractures F3 are blocked at the junction of the bedding planes, resulting in spalling of bedding.

Key words: horizontally layered rock mass, buckling failure, finite-discrete element method (FDEM) numerical simulation, failure mode of surrounding rocks, circular tunnel

中图分类号: 

  • TU457
[1] 刘泉声, 邓鹏海, 毕晨, 李伟伟, 刘军, . 深部巷道软弱围岩破裂碎胀过程及锚喷-注浆 加固FDEM数值模拟[J]. 岩土力学, 2019, 40(10): 4065-4083.
[2] 吕爱钟,覃 媛,陈虹宇. 马蹄形隧洞考虑支护滞后过程的应力分析[J]. , 2014, 35(S1): 42-48.
[3] 孟 强,赵洪波,茹忠亮. 锚杆支护圆形隧洞的等效强度参数及可靠性分析[J]. , 2014, 35(S1): 437-442.
[4] 卞 康 ,肖 明 ,胡田清 . 水工隧洞围岩裂纹扩展的临界水压解析解[J]. , 2012, 33(8): 2429-2436.
[5] 卞 康 ,肖 明 ,刘会波. 考虑脆性损伤和渗流的圆形水工隧洞解析解[J]. , 2012, 33(1): 209-214.
[6] 李英杰 ,张顶立 ,刘保国. 考虑变形模量劣化的应变软化模型在 FLAC3D中的开发与验证[J]. , 2011, 32(S2): 647-652.
[7] 范鹏贤,王明洋,李文培,陈明雄. 深埋隧洞卸荷过程中围岩应力变形的时间效应[J]. , 2010, 31(S1): 28-34.
[8] 孙金山,卢文波. 非轴对称荷载下圆形隧洞围岩弹塑性分析解析解[J]. , 2007, 28(S1): 327-332.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .