岩土力学 ›› 2022, Vol. 43 ›› Issue (S1): 521-531.doi: 10.16285/j.rsm.2021.1679

• 岩土工程研究 • 上一篇    下一篇

深井穿尖交岔点突变失稳机制分析及应用

刘小虎1, 2,姚直书1, 2,程桦1, 2,查文华3,吴捷豪1, 2   

  1. 1. 安徽理工大学 土木建筑学院,安徽 淮南 232001;2. 安徽理工大学 矿山地下工程教育部工程研究中心,安徽 淮南 232001; 3. 东华理工大学 土木与建筑工程学院,江西 南昌 330013
  • 收稿日期:2021-10-04 修回日期:2022-02-21 出版日期:2022-06-30 发布日期:2022-07-15
  • 作者简介:刘小虎,男,1986年生,博士,讲师,主要从事矿山巷道支护、地下采矿稳定性等方面研究工作。
  • 基金资助:
    国家自然科学基金面上项目(No.51964002);安徽理工大学引进人才基金(No.13210028);安徽理工大学校级资助重点项目(自然科学类)(No.xjzd2020-17)。

Analysis and application of catastrophe instability mechanism of intersection point in a deep roadway

LIU Xiao-hu1, 2, YAO Zhi-shu1, 2, CHENG Hua1, 2, ZHA Wen-hua3, WU Jie-hao1, 2   

  1. 1. School of Civil Engineering and Architecture, Anhui University of Science and Technology, Huainan, Anhui 232001, China; 2. Research Center of Mine Underground Engineering of Ministry of Education, Anhui University of Science & Technology, Huainan, Anhui 232001, China; 3. School of Civil and Architectural Engineering, East China University of Technology, Nanchang, Jiangxi 330013, China
  • Received:2021-10-04 Revised:2022-02-21 Online:2022-06-30 Published:2022-07-15
  • Supported by:
    This work was supported by the General Program of National Natural Science Foundation of China(51964002), the Talent Introduction Fund of Anhui University of Science and Technology of China(13210028) and the Key Projects Supported by Anhui University of Science and Technology of China(xjzd2020-17).

摘要:

深部煤炭开采中软岩巷道围岩支护问题,尤其是软岩交岔巷道围岩稳定性长期深受关注。由交岔点变形破坏内在原因分析得出,其顶板与三角区岩柱支撑体系是交岔点失稳破坏的薄弱点。基于“等效跨度”概念并结合突变理论建立交岔点顶板−岩柱系统简化受力的尖点突变模型,获得交岔点尖点突变方程及系统失稳破坏的充要判定条件。分析了工程地质因素(埋深H、岩柱弹性模量E)、巷道交岔点结构参数(交岔角度q、巷道高度h)及支护参数a对交岔点稳定性影响。得出qEa与控制参数v的非线性关系存在曲率变化拐点。当q<35º,E<16 GPa时,控制参数v对各个因素的敏感度顺序为qEahH,即当围岩较软弱时交岔点稳定性受岩柱强度影响较为强烈,交岔点设计角度不宜小于35º。当q≥35º,E≥16 GPa时,敏感度顺序为hHqaE,即当岩柱强度较高时交岔点稳定性受结构参数影响较大。结合丁集矿深井软岩工程实例,采用理论分析指导交岔点设计参数优化。矿压监测数据表明,优化支护设计有效地控制了西三轨回联巷交岔点围岩变形,验证了理论推导方法的正确性。

关键词: 深部巷道工程, 穿尖交岔点, 尖点突变模型, 敏感性分析, 工程应用

Abstract:

The problem of surrounding rock support of soft rock roadway in deep coal mining, especially the stability of surrounding rock of soft rock intersection roadway, has been concerned for a long time. From the analysis of the internal causes of the deformation and failure of the intersection, it is concluded that the roof and the rock pillar support system in the triangle area are the weak points of the instability and failure of the intersection. Based on the concept of ‘equivalent span’ and catastrophe theory, a cusp catastrophe model of the roof rock-column system at the intersection is established and the cusp catastrophe equation at the intersection and the necessary and sufficient judgment conditions for the instability and failure of the system are obtained. The effects of engineering geological factors (buried depth H and elastic modulus of rock column E), structural parameters of roadway intersection (intersection angle q and roadway height h) and support design parameters a on the stability of intersection are analyzed. It is concluded that the non-linear relationship between q, E, a and the control parameter v has a curvature change inflection point. When q <35º and E<16 GPa, the sensitivity order of control parameters to various factors is: q >E>a>h>H, that is, when the rock column is weak, the stability of the intersection is strongly affected by the strength of the rock column, and the design angle of the intersection should not be less than 35º. When q≥35º and E≥16 GPa, the order of sensitivity is: h>H>q >a>E, that is, when the strength of surrounding rock is high, the stability of intersection is significantly affected by structural parameters. Combined with the example of deep well soft rock engineering in Dingji mine, theoretical analysis is used to guide the optimization of design parameters of intersection. The ground pressure monitoring data show that the optimized support design effectively controls the surrounding rock deformation at the intersection of the west third track back link roadway, and verifies the correctness of the theoretical derivation.

Key words: deep roadway engineering, intersection point, cusp catastrophe model, sensitivity analysis, engineering application

中图分类号: 

  • TD32
[1] 周兵红. 一种预测砂土土-水特征曲线的简化方法[J]. 岩土力学, 2022, 43(S1): 222-228.
[2] 李志浩, 肖世国. 不同运动模式的悬臂式挡墙地震永久位移算法[J]. 岩土力学, 2021, 42(3): 723-734.
[3] 吴顺川, 孙伟, 刘洋, 成子桥, 许学良, . Ⅰ型断裂韧度模拟方法及细观影响因素研究[J]. 岩土力学, 2020, 41(8): 2536-2546.
[4] 李见飞, 苏杨, 孙志彬, 赵晨, . 基于Newmark滑块原理的抗滑桩加固 三维土坡的地震位移分析方法[J]. 岩土力学, 2020, 41(8): 2785-2795.
[5] 陈炳瑞, 吴昊, 池秀文, 刘辉, 伍梦蝶, 晏俊伟, . 基于STA/LTA岩石破裂微震信号实时识 别算法及工程应用[J]. 岩土力学, 2019, 40(9): 3689-3696.
[6] 陈正汉, 郭 楠、. 非饱和土与特殊土力学及工程应用研究的新进展[J]. 岩土力学, 2019, 40(1): 1-54.
[7] 陈上元, 赵 菲, 王洪建, 袁广祥, 郭志飚, 杨 军, . 深部切顶沿空成巷关键参数研究及工程应用[J]. 岩土力学, 2019, 40(1): 332-342.
[8] 吴曙光,付红梅,张岩岩,. 拉压分散型锚索锚固机制及工程应用研究[J]. , 2018, 39(6): 2155-2163.
[9] 郭重阳,李典庆,曹子君,高国辉,唐小松. 考虑空间变异性条件下的边坡稳定可靠度高效敏感性分析[J]. , 2018, 39(6): 2203-2210.
[10] 李术才,贺 鹏,李利平,张乾青,石少帅,徐 飞,刘洪亮. 隧道岩质围岩亚级分级可靠度分析方法及其工程应用[J]. , 2018, 39(3): 967-376.
[11] 陈卫忠,马永尚,于洪丹,龚 哲,李香玲,. 泥岩核废料处置库温度-渗流-应力耦合参数敏感性分析[J]. , 2018, 39(2): 407-416.
[12] 夏开宗,陈从新,宋许根,刘秀敏,周意超, . 相对湿度作用下的石膏矿护顶层突变破坏机制分析[J]. , 2018, 39(2): 589-597.
[13] 林 姗,李春光,孙冠华,王水林,杨永涛,. 二维接触问题的互补算法及工程应用[J]. , 2018, 39(10): 3863-3874.
[14] 张永杰,夏旖琪,冯夏庭,王桂尧,. 陡坡段双桩-柱基础简化计算方法及影响因素分析[J]. , 2017, 38(6): 1705-1715.
[15] 贺 鹏,肖 杰,张 健,徐 飞,张云鹏,. 膨胀土堑坡稳定性动态风险评估 FAHP模型及工程应用[J]. , 2016, 37(S2): 502-512.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .