岩土力学 ›› 2022, Vol. 43 ›› Issue (12): 3503-3512.doi: 10.16285/j.rsm.2022.0048

• 测试技术 • 上一篇    

基于FRP筋自感知监测技术的隧道衬砌施工 全过程应变分析

郭东1,魏强2,李锦辉1,黄正凯3,白石4,贾大鹏2,钱林峰4,欧进萍1   

  1. 1. 哈尔滨工业大学(深圳) 深圳市土木工程智能结构系统重点实验室,广东 深圳 518055;2. 中国国家铁路集团有限公司 工程管理中心,北京 100844;3. 中铁十一局集团有限公司,湖北 武汉 430061;4. 智性纤维复合加固南通有限公司,江苏 南通 226010
  • 收稿日期:2022-01-10 修回日期:2022-05-19 出版日期:2022-12-28 发布日期:2023-01-05
  • 通讯作者: 李锦辉,女,1978年生,博士,教授,博士生导师,主要从事岩土工程风险分析与智能岩土工程方向的研究。E-mail: jinhui.li@hit.edu.cn E-mail:13713510895@163.com
  • 作者简介:郭东,男,1993年生,博士研究生,主要从事隧道健康监测方面的研究工作。
  • 基金资助:
    国家重点研发计划(No.2019YFC1511101);中国国家铁路集团有限公司科技研究开发计划;深圳市重点实验室筹建启动项目(No.ZDSYS20200810113601005)

Strain analysis of tunnel lining during construction based on self-sensing monitoring technology of FRP

GUO Dong1, WEI Qiang2, LI Jin-hui1, HUANG Zheng-kai3, BAI Shi4, JIA Da-peng2, QIAN Lin-feng4, OU Jin-ping1   

  1. 1. Shenzhen Key Laboratory of Intelligent Structure System in Civil Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China; 2. Engineering Management Center, China State Railway Group Co., Ltd., Beijing 100844, China; 3. China Railway 11 Bureau Group Co., Ltd., Wuhan, Hubei 430061, China; 4. Zhixing FRP Reinforcement Nantong Co., Ltd., Nantong, Jiangsu 226010, China
  • Received:2022-01-10 Revised:2022-05-19 Online:2022-12-28 Published:2023-01-05
  • Supported by:
    This work was supported by the National Key R&D Program of China (2019YFC1511101), the Science and Technology R&D Plan of China State Railway Group Co., Ltd., and the Shenzhen Key Laboratory Launching Project (ZDSYS20200810113601005).

摘要: 作为地下结构,隧道衬砌的隐蔽性导致其全天候的实时监测非常困难。提出了一种基于内嵌光纤自感知纤维增强复合塑料(fiber reinforced plastic,FRP)筋的隧道衬砌智能监测方法,将光纤传感器嵌入FRP材料中形成自感知FRP筋并嵌入隧道衬砌中,实现对隧道衬砌不同位置全天候、长时间、高精度监测,监测结果能够定量给出隧道衬砌环向的实时受力状态,反映裂缝生成风险。采用该智能监测方法对广汕高铁陈塘隧道进行了监测,监测数据反映了隧道衬砌施工全过程的力学机制。影响衬砌结构安全的因素主要有隧道围岩压力、水化热导致的温差应力以及混凝土干缩导致的应力;其中,混凝土水化热产生的温差效应导致衬砌内侧受到较大拉应力,需采取合理的施工措施以避免温差效应引起的拉应力过大而产生温度裂缝。所提出的智能监测方法能够全天候、长时间、实时监测隧道衬砌应力−应变状态,此自感知系统将在隧道运营过程中持续、及时反映隧道衬砌开裂风险,为高速铁路列车的运行安全提供技术保障。

关键词: 衬砌智能监测, 全阶段受力状况, 衬砌裂缝, 光纤光栅, 自感知FRP筋

Abstract: It is difficult to monitor the underground tunnel lining in an all-weather manner due to its concealment. An intelligent monitoring method of tunnel lining based on self-sensing FRP (fiber reinforced plastic) bar embedded with optical fiber is proposed in this paper. The optical fiber sensor is embedded in the fiber reinforced plastic to form self-sensing FRP bar, which is installed in the tunnel lining, to monitor the stress state of the tunnel lining in a real-time and all-weather manner. The monitoring results can show the circumferential stress of the tunnel lining and predict the risk of crack generation. The intelligent monitoring method is used to monitor Chentang tunnel in Guangzhou-to-Shantou high-speed railway. The main factors affecting the safety of lining structure during the period from lining construction to operation are surrounding rock pressure, temperature difference stress caused by hydration heat and stress caused by concrete drying shrinkage. The temperature difference stress caused by hydration heat can lead to a large tensile stress on the inner side of the lining. Therefore, reasonable construction measures need to adopt to avoid cracking caused by temperature effect. The proposed intelligent monitoring method is capable of monitoring the tunnel lining stress-strain state in real time, for a long period of time and in all weather. This self-sensing system will continuously and timely reflect the risk of tunnel lining cracking during the tunnel operation, providing a technical guarantee for the operational safety of high-speed railroad trains.

Key words: intelligent monitoring of lining, stress state at full stage, lining cracks, fiber bragg grating, self-sensing FRP bar

中图分类号: 

  • U456.3
[1] 张婵青, 何凤飞, 姜顺航, 曾子真, 熊峰, 陈江, . 土体含水率监测的移动点热源法研究[J]. 岩土力学, 2022, 43(7): 2025-2034.
[2] 秦伟, 戴国亮, 马李志, 裴铭海, 王磊, 朱光耀, 高博, . 珊瑚礁地层中PHC桩原位静载试验研究[J]. 岩土力学, 2019, 40(S1): 381-389.
[3] 白晓宇,张明义,匡 政,王永洪,闫 楠,朱 磊,. 光纤光栅传感技术在GFRP抗浮锚杆现场拉拔试验中的应用[J]. , 2018, 39(10): 3891-3899.
[4] 李龙起,巨能攀, . 光栅测试技术在顺层边坡降雨模型试验中的应用研究[J]. , 2016, 37(7): 2119-2128.
[5] 魏 纲 ,苏勤卫 ,邢建见 ,丁 智,. 基于光纤光栅技术的海底沉管隧道管段应变研究[J]. , 2015, 36(S2): 499-506.
[6] 朱友群 ,朱鸿鹄 ,孙义杰 ,施 斌,. FBG-BOTDA联合感测管桩击入土层模型试验研究[J]. , 2014, 35(S2): 695-702.
[7] 段 抗 ,张强勇 ,朱鸿鹄 ,向 文 ,蔡 兵 ,许孝滨 . 光纤位移传感器在盐岩地下储气库群模型试验中的应用[J]. , 2013, 34(S2): 471-476.
[8] 蒋 奇 ,隋青美 ,张庆松 ,崔新壮,. 光纤光栅锚杆传感在隧道应变监测中的技术研究[J]. , 2006, 27(S1): 315-318.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .