岩土力学 ›› 2023, Vol. 44 ›› Issue (12): 3617-3628.doi: 10.16285/j.rsm.2022.1984

• 数值分析 • 上一篇    下一篇

动静载下全长砂浆锚固玻璃钢锚杆受力及失效特征分析

王文杰1, 2,刘超1, 2,黄永祥3,余龙哲1, 2   

  1. 1. 武汉科技大学 资源与环境工程学院,湖北 武汉 430081;2. 武汉科技大学 冶金矿产资源高效利用与造块湖北省重点实验室,湖北 武汉 430081;3. 金川集团股份有限公司,甘肃 金昌 737100
  • 收稿日期:2022-12-21 接受日期:2023-02-21 出版日期:2023-12-20 发布日期:2023-12-21
  • 通讯作者: 刘超,男,1997年生,硕士研究生,主要从事巷道围岩支护方面的研究。E-mail: liuchaozyx@163.com E-mail:wangwenjie@wust.edu.cn
  • 作者简介:王文杰,男,1978年生,博士,教授,博士生导师,主要从事井巷支护及地压控制等方面的研究。
  • 基金资助:
    国家自然科学基金(No.51974206);湖北省安全生产专项资金科技项目(No.KJZX202007007)

Stress and failure characteristics of full-length mortar anchored GFRP bolts under dynamic and static loads

WANG Wen-jie1, 2, LIU Chao1, 2, HUANG Yong-xiang3, YU Long-zhe1, 2   

  1. 1. School of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China; 2. Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China; 3. Jinchuan Group Co., Ltd., Jinchang, Gansu 737100, China
  • Received:2022-12-21 Accepted:2023-02-21 Online:2023-12-20 Published:2023-12-21
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51974206) and the Science and Technology of Special Foundation for Safety Production in Hubei Province (KJZX202007007).

摘要: 针对爆破动载作用下玻璃钢锚杆的损伤失效问题,利用FLAC3D软件建立全长砂浆锚固玻璃钢锚杆数值计算模型,研究了预紧力静载和爆破动载下锚杆杆体、杆体与砂浆界面、砂浆与围岩界面的受力及失效特征,同时分析了动载强度、围岩及砂浆强度对锚杆受力的影响规律,并与现有试验结果对比,验证了研究结果的可靠性。研究结果表明:全长砂浆锚固玻璃钢锚杆最大轴向应力随动载强度的增大呈线性增大而随围岩或砂浆强度的增大而减小,且轴向应力分布较金属锚杆更为集中;两个界面剪应力均是沿杆体轴向迅速增大至峰值后快速减小为0,之后黏结性能相对较弱的界面先发生脱黏破坏,脱黏位置剪应力下降至残余黏结强度,同时剪应力峰值向孔底转移;玻璃钢锚杆剪应力分布较金属锚杆更集中,峰值位置更加突出;动载强度越大,破坏界面的脱黏长度和剪应力分布范围越大,而未破坏界面的剪应力峰值位置也会向孔底转移;围岩强度越大或砂浆强度越小,剪切破坏越倾向于发生在杆体−砂浆界面,反之,则越倾向于发生在砂浆−围岩界面。

关键词: 全长砂浆锚固, 玻璃钢锚杆, 爆破动载, 界面剪应力, 失效特征

Abstract: In order to study failure problem of glass fiber reinforced plastics (GFRP) bolts under blasting dynamic load, this study establishes a numerical model of full-length mortar anchored GFRP bolt using FLAC3D software. The stress and failure characteristics of the bolt, bolt-mortar interface, and mortar-rock interface under pre-tension static load and blasting dynamic load are investigated, and the influences of dynamic load intensity, surrounding rock strength and mortar strength on bolt stress are analyzed. The reliability of the research results is verified in comparison with the existing experimental results. The results show that the maximum axial stress of GFRP bolt increases linearly with the increase of dynamic load intensity and decreases with the increase of surrounding rock or mortar strength, and the axial stress distribution of GFRP bolt is more concentrated than that of metal bolt. The shear stress of the two interfaces increases rapidly to the peak along the bolt, and then decreases to zero. After that, the interface with relatively weak bonding properties is debonded at first, and the shear stress at the debonding position decreases to the residual bond strength. Meanwhile, the peak shear stress shifts to the bottom of the hole. The shear stress distribution of GFRP bolt is more concentrated than that of metal bolt, and the peak position is more prominent. The greater the dynamic load intensity, the larger the debonding length and shear stress distribution of the failure interface, and the peak position of the shear stress of the undamaged interface will be transferred to the bottom of the hole. The greater the surrounding rock strength or the smaller the mortar strength, the more likely the shear failure occurs at the bolt-mortar interface; on the contrary, it is more likely to occur at the mortar-rock interface.

Key words: full-length mortar anchorage, GFRP bolts, blasting dynamic load, interface shear stress, failure characteristics

中图分类号: 

  • TD353
[1] 文竞舟、张永兴、王 成、. 隧道围岩全长黏结式锚杆界面力学模型研究[J]. , 2013, 34(6): 1645-1651.
[2] 顾士坦 ,施建勇 ,王春秋 ,谭云亮. 劲性搅拌桩芯桩荷载传递规律理论研究[J]. , 2011, 32(8): 2473-2478.
[3] 丁 瑜,王全才,何思明. 拉力分散型锚索锚固段荷载传递机制[J]. , 2010, 31(2): 599-603.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[2] 钟佳玉,郑永来,倪 寅. 波浪作用下砂质海床孔隙水压力的响应规律实验研究[J]. , 2009, 30(10): 3188 -3193 .
[3] 孙文静,孙德安,孟德林. 饱和膨润土及其与砂混合物的压缩变形特性[J]. , 2009, 30(11): 3249 -3255 .
[4] 杨有莲,朱俊高,余 挺,吴晓铭. 土与结构接触面力学特性环剪试验研究[J]. , 2009, 30(11): 3256 -3260 .
[5] 刘玉成,庄艳华. 地下采矿引起的地表下沉的动态过程模型[J]. , 2009, 30(11): 3406 -3410 .
[6] 肖衡林,张晋锋,何 俊. 基于分布式光纤传感技术的流速测量方法研究[J]. , 2009, 30(11): 3543 -3547 .
[7] 杨春和,马洪岭,刘建锋. 循环加、卸载下盐岩变形特性试验研究[J]. , 2009, 30(12): 3562 -3568 .
[8] 赖远明,张 耀,张淑娟,金 龙,常小晓. 超饱和含水率和温度对冻结砂土强度的影响[J]. , 2009, 30(12): 3665 -3670 .
[9] 兰四清,王玉林,谢康和. 径向双侧壁排水软土地基固结数学模型及解析解[J]. , 2009, 30(12): 3871 -3875 .
[10] 苗强强,张 磊,陈正汉,黄雪峰. 非饱和含黏砂土的广义土-水特征曲线试验研究[J]. , 2010, 31(1): 102 -106 .