岩土力学 ›› 2024, Vol. 45 ›› Issue (4): 1242-1255.doi: 10.16285/j.rsm.2023.0515

• 数值分析 • 上一篇    下一篇

钢粒子迟滞重复冲击破岩硬岩损伤破裂特征研究

鞠明和1,2,陶泽军1,2,蔚立元1,2,姜礼杰3,郑彦龙4,邹春江5   

  1. 1. 中国矿业大学 深地工程智能建造与健康运维全国重点实验室,江苏 徐州 211116;2. 中国矿业大学 力学与土木工程学院,江苏 徐州 211116; 3. 中铁工程装备集团有限公司,河南 郑州 450016; 4. 东南大学 土木工程学院,江苏 南京 211183; 5. 蒙纳士大学 土木工程系,澳大利亚 墨尔本
  • 收稿日期:2023-04-24 接受日期:2023-09-10 出版日期:2024-04-17 发布日期:2024-04-18
  • 作者简介:鞠明和,男,1990 年生,博士,副教授,主要从事岩石动力学与煤岩动力灾害方面的研究。E-mail: minghe.ju@cumt.edu.cn
  • 基金资助:
    国家自然科学基金(No.52104101,No.52227901);中央高校基本科研业务费(No.2023ZDYQ11002);中国博士后科学基金(No.2022M713369)。

Damage and fracture characteristics of hard rocks caused by hysterisis and repeated impacts of steel particles

JU Ming-he1, 2, TAO Ze-jun1, 2, YU Li-yuan1, 2, JIANG Li-jie3, ZHENG Yan-long4, ZOU Chun-jiang5   

  1. 1. State Key Laboratory of Intelligent Construction and Healthy Operation & Maintenance of Deep Underground Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 211116, China; 2. School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 211116, China; 3. China Railway Engineering Equipment Group Co., Ltd., Zhengzhou, Henan 450016, China; 4. School of Civil Engineering, Southeast University, Nanjing, Jiangsu 211183, China; 5. Department of Civil Engineering, Monash University, Melbourne, Australia
  • Received:2023-04-24 Accepted:2023-09-10 Online:2024-04-17 Published:2024-04-18
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (52104101, 52227901), the Fundamental Research Funds for the Central Universities (2023ZDYQ11002) and the China Postdoctoral Science Foundation (2022M713369).

摘要: 粒子冲击辅助破岩技术凭借其快速、高效等优点,对硬质岩体有着较好的破岩效果。通过粒子冲击试验和离散元模拟相结合的方法研究单、双粒子冲击速度、双粒子间距等因素对高强度花岗岩表面、三维及剖面形貌特征的影响,探寻冲击坑深度、冲击坑体积及冲击坑表面面积随冲击参数的变化规律,统计粒子冲击破岩裂纹的分布规律,并且从能量吸收率的角度评价双粒子迟滞冲击破岩的效能。结果表明:冲击坑深度与冲击速度呈正相关;随着粒子间距的增大,冲击坑由相交逐渐相离,形貌随之变化,冲击坑体积随之减小,而冲击坑表面面积增大;通过模拟发现,裂纹主要分布在斜长石与钾长石的晶界处,以拉伸破坏为主;当选用5 mm直径的钢粒子破碎强度200 MPa左右的极坚硬花岗岩时,双粒子迟滞冲击破岩的能量吸收率曲线随粒子冲击速度增大趋于平缓,在双粒子迟滞冲击破岩的粒子间距为8~10 mm且冲击速度400 m/s左右时能达到最佳的冲击辅助破岩效果。

关键词: 辅助破岩, 粒子迟滞冲击, 冲击参数, 硬岩损伤特征, 能量吸收率

Abstract: The particle impact-assisted rock-breaking technology offers the advantages of high speed and efficiency, demonstrating effective rock-breaking capabilities on hard rock. In a recent study, the author investigated the influence of impact speed of single and double particles, the distance between double particles, and other factors on the surface, three-dimensional and sectional morphology characteristics of high-strength granite. This investigation involved a combination of particle impact testing and discrete element simulation. The study aimed to elucidate the impact parameters’ influence on the changes in impact crater depth, volume, and surface area. Additionally, it examined the distribution of rock-breaking cracks caused by particle impact and evaluated the effectiveness of hysterisis double-particle impact rock-breaking from the perspective of energy absorption rate. The results revealed a positive correlation between impact crater depth and impact velocity. Moreover, as the distance between particles increased, the impact crater underwent morphological changes, becoming separated, with a decrease in volume and an increase in surface area. The simulations indicated that the cracks primarily distributed at the grain boundaries of plagioclase and orthoclase feldspar, with the dominant failure mode being tensile failure. Furthermore, when employing a 5 mm-diameter steel particle on 200 MPa extremely hard granite, the energy absorption curve of hysterisis double-particle impact rock-breaking tended to flatten with increasing impact velocity. Notably, at a particle distance of 8–10 mm and an impact velocity of around 400 m/s, the optimal impact-assisted rock-breaking effect was achieved.

Key words: assisted rock breaking, particle hysterisis impact, impact parameters, damage characteristics of hard rock, energy absorption rate

中图分类号: 

  • TU 452
[1] 鞠明和, 陶泽军, 李晓锋, 蔚立元, 姜礼杰, 李晓昭, . 粒子重复冲击破岩细观损伤及破碎特征试验研究[J]. 岩土力学, 2022, 43(12): 3281-3293.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .