›› 2005, Vol. 26 ›› Issue (5): 755-758.

• 基础理论与实验研究 • 上一篇    下一篇

冲击碾压法处理黄土地基的试验研究

王吉利1,刘怡林2,沈兴付3,彭圣平4   

  1. 1.中国科学院武汉岩土力学研究所,武汉430071;2.交通部公路科学研究所,北京100088; 3.湖北省交通规划设计院,武汉430051;4.湖北省天仙一级公路建设指挥部,天门 431700
  • 收稿日期:2004-07-26 出版日期:2005-05-10 发布日期:2013-12-17
  • 作者简介:王吉利,男,1964年生,硕士,副研究员,主要从事岩土工程专业方面的实践与研究工作

Experimental investigation on treatment of loess subgrade with impaction and grind method(IGM)

WANG Ji-li1, LIU Yi-lin2, SHEN Xing-fu3 , PENG Sheng-ping4   

  1. 1.Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China; 2. Research Institute of Highway, Ministry of Communications, Beijing 100088, China; 3. Hubei Communication Planning and Design Institute, Wuhan 430071, China; 4. Hubei Construction Headquarters of Tianxian First Class Highway, Tianmen 431700, China
  • Received:2004-07-26 Online:2005-05-10 Published:2013-12-17

摘要: 通过载荷试验、标准贯入试验、重型动力触探试验、静力触探试验等原位测试,以及探井取土样进行室内土工试验,对黄土地区某高速公路路段进行冲击碾压法地基处理的试验研究,探讨地基土的压实度、密实度、压缩性、湿陷性、处理深度等随冲压遍数的变化规律。研究表明,采用冲击碾压法处理黄土地基,一次处理的有效深度可达1.0 m,且对1.0~2.0 m土层有一定程度的影响。因此,冲击碾压法处理地基是有效和实用的,且生产效率高,可在黄土地区路基工程中推广应用。

关键词: 黄土, 冲击碾压法, 原位测试, 土工试验, 压实度

Abstract: In a representative highway loess section, the experimental investigations on treatment of loess subgrade with impaction and grind method(IGM) were conducted. In these investigation, in-situ tests(loading tests, SPTs, DPTs, CPTs) and related laboratory tests were adopted. The rule that physico-mechanical parameters of subgrade (degree of compaction, degree of density, compression and collapsibility) and depth of treatment change along with pressing number is discussed. Through investigation, it is indicated that the effective depth of once treatment can reach 1.0m and has some effect on soil layer from 1.0m to 2.0m with the treatment of subgrade of loess with IGM. Therefore the treatment of subgrade with IGM is effective, practical and has high production efficiency. And it can get a wide use in highway loess foundation engineering.

Key words: loess, impaction and grind method(IGM), in-situ sounding, geotechnical test, degree of compaction

中图分类号: 

  • TU 413
[1] 邵生俊, 陈 菲, 邓国华, . 基于平面应变统一强度公式的结构性黄土填料 挡墙地震被动土压力研究[J]. 岩土力学, 2019, 40(4): 1255-1262.
[2] 王铁行, 金 鑫, 罗 扬, 张松林. 考虑卸荷作用的黄土湿陷性评价方法研究[J]. 岩土力学, 2019, 40(4): 1281-1290.
[3] 王娟娟, 郝延周, 王铁行. 非饱和压实黄土结构特性试验研究[J]. 岩土力学, 2019, 40(4): 1351-1357.
[4] 谌文武, 刘 伟, 王 娟, 孙冠平, 吴玮江, . 黄土饱和度与B值关系试验研究[J]. 岩土力学, 2019, 40(3): 834-842.
[5] 张玉伟, 翁效林, 宋战平, 谢永利, . 考虑黄土结构性和各向异性的修正剑桥模型[J]. 岩土力学, 2019, 40(3): 1030-1038.
[6] 王丽琴, 邵生俊, 王 帅, 赵 聪, 石鹏鑫, 周 彪, . 原状黄土的压缩曲线特性[J]. 岩土力学, 2019, 40(3): 1076-1084.
[7] 姚志华, 陈正汉, 方祥位, 黄雪峰, . 非饱和原状黄土弹塑性损伤流固耦 合模型及其初步应用 [J]. 岩土力学, 2019, 40(1): 216-226.
[8] 杜伟飞, 郑建国, 刘争宏, 张继文, 于永堂, . 黄土高填方地基沉降规律及排气条件影响[J]. 岩土力学, 2019, 40(1): 325-331.
[9] 张 磊, 刘 慧, 王铁行. 固结与不固结条件下黄土-混凝土接触面剪切试验[J]. 岩土力学, 2018, 39(S2): 238-244.
[10] 陈瑞锋,田高源,米栋云,董晓强,. 赤泥改性黄土的基本工程性质研究[J]. , 2018, 39(S1): 89-97.
[11] 王丽琴,邵生俊,赵 聪,鹿忠刚,. 黄土初始结构性对其压缩屈服的影响[J]. , 2018, 39(9): 3223-3228.
[12] 丑亚玲,郏书胜,张庆海,曹 伟,盛 煜,. 考虑结构性的冻融作用对黄土湿陷系数的影响[J]. , 2018, 39(8): 2715-2722.
[13] 张泽林, 吴树仁, 王 涛, 唐辉明, 梁昌玉, . 地震波振幅对黄土-泥岩边坡动力响应规律的影响[J]. 岩土力学, 2018, 39(7): 2403-2412.
[14] 姚志华,连 杰,陈正汉,朱元青,方祥位,. 考虑细观结构演化的非饱和Q3 原状黄土弹塑性本构模型[J]. , 2018, 39(5): 1553-1563.
[15] 方瑾瑾,冯以鑫,朱昌星,. 真三轴条件下Q3原状黄土的力学特性[J]. , 2018, 39(5): 1699-1708.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李鸿博,郭小红. 公路连拱隧道土压力荷载的计算方法研究[J]. , 2009, 30(11): 3429 -3434 .
[2] 瞿万波,刘新荣,傅晏,秦晓英. 洞桩法大断面群洞交叉隧道初衬数值模拟[J]. , 2009, 30(9): 2799 -2804 .
[3] 王川婴,胡培良,孙卫春. 基于钻孔摄像技术的岩体完整性评价方法[J]. , 2010, 31(4): 1326 -1330 .
[4] 李华明,蒋关鲁,刘先峰. CFG桩加固饱和粉土地基的动力特性试验研究[J]. , 2010, 31(5): 1550 -1554 .
[5] 谈云志,孔令伟,郭爱国,万 智. 压实红黏土水分传输的毛细效应与数值模拟[J]. , 2010, 31(7): 2289 -2294 .
[6] 王生新,陆勇翔,尹亚雄,郭定一. 碎石土湿陷性试验研究[J]. , 2010, 31(8): 2373 -2377 .
[7] 王云岗,熊 凯,凌道盛. 基于平动加转动运动场的边坡稳定上限分析[J]. , 2010, 31(8): 2619 -2624 .
[8] 徐志军,郑俊杰,张 军,马 强. 聚类分析和因子分析在黄土湿陷性评价中的应用[J]. , 2010, 31(S2): 407 -411 .
[9] 邓宗伟,冷伍明,李志勇,岳志平. 喷混凝土边坡温度场与应力场耦合的有限元时效分析[J]. , 2009, 30(4): 1153 -1158 .
[10] 王洪亮 ,范鹏贤 ,王明洋 ,李文培 ,钱岳红. 应变率对红砂岩渐进破坏过程和特征应力的影响[J]. , 2011, 32(5): 1340 -1346 .