›› 2015, Vol. 36 ›› Issue (S2): 104-110.doi: 10.16285/j.rsm.2015.S2.013

• 基础理论与实验研究 • 上一篇    下一篇

地下煤火燃空区覆岩裂隙分布模型和局部化特征

王少锋1, 2,李夕兵1,王德明2,李启月1   

  1. 1. 中南大学 资源与安全工程学院,湖南 长沙 410083;2. 中国矿业大学 煤炭资源与安全开采国家重点实验室,江苏 徐州 221116
  • 收稿日期:2014-07-03 出版日期:2015-08-31 发布日期:2018-06-14
  • 作者简介:王少锋,男,1989年生,博士研究生,主要从事岩石诱导破裂以及岩石灾害方向的研究工作。
  • 基金资助:
    国家自然科学基金(No.51134020,No.11472311,No.51374243)。

Distribution model and localization features of rock fissures over combustion space area of underground coal fire

WANG Shao-feng1, 2, LI Xi-bing1, WANG De-ming2, LI Qi-yue1   

  1. 1. School of Resources and Safety Engineering, Central South University, Changsha, Hunan 410083, China; 2. State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
  • Received:2014-07-03 Online:2015-08-31 Published:2018-06-14

摘要: 在推导出覆岩层下沉曲面方程和微元面平面伸张量方程的基础上构建了地下煤火燃空区各覆岩离层裂隙率、破断裂隙率和总裂隙率的二维分布模型,经实例分析发现,覆岩裂隙场是由离层裂隙场和破断裂隙场组成的竖向不连续具有各向异性的非均质多孔介质,覆岩四周裂隙率大,内部裂隙率小;随着覆岩埋深减小,裂隙发育程度逐渐降低,离层裂隙率极大值由0.36、0.20、0.14、0.12逐次降低,破断裂隙率极大值由0.32、0.11、0.05、0.02逐次降低;在覆岩中部区域出现裂隙率竖向变化突变点;覆岩周边裂隙率分布形式由破断裂隙主导,内部则由离层裂隙主导。基于钻孔红外热像分析技术提出了一种间接性的覆岩裂隙现场实测方法,经验证选取的5个点的裂隙率计算值与实测值的差异率都小于9%,差异率低,模型具有较高的可靠性。

关键词: 地下煤火, 离层裂隙, 破断裂隙, 裂隙率, 分布模型

Abstract: Based on the derived equations of overlying strata subsidence and infinitesimal surface stretching, two-dimensional and nonhomogeneous distribution model of delamination fracture rate, broken fissures rate and total fracture rate of the overlying strata in the combustion space area of underground coal fire is constructed. And through a case study, it is found that the fracture field of overlying strata is the vertical discontinuous, anisotropy and heterogeneous porous media composed of delamination fracture field and broken fissures field. Some conclusions are drawn as follows: (1) The fissure rate in the surrounding of overlying strata is large; and the internal region is small. (2) With the decrease of depth of overlying strata, fissures growth extent reduces gradually. The maximum value of delamination fissure rate successively reduced from 0.36 to 0.20, 0.14, 0.12; and the maximum value of broken fissure rate successively reduced from 0.32 to 0.11, 0.05, 0.02. (3) There is a mutational point of the vertical variation of fissure rate in the central area of overlying strata. (4) The distribution of fissure rate in the surrounding of overlying strata is led by broken fissures, but the internal region is led by delamination fissures. Finally, an indirect measurement method of overlying strata fissures has been proposed on the basis of the infrared thermal image analysis technology. And the high reliability of the model was confirmed by this method.

Key words: underground coal fire, delamination fracture, broken fissures, fissure rate, distribution model

中图分类号: 

  • TD 84
[1] 朱德福,屠世浩,袁 永,马行生, 李向阳, . 破碎岩体压实特性的三维离散元数值计算方法研究[J]. , 2018, 39(3): 1047-1055.
[2] 邢 婕 ,唐小松 ,李典庆 ,赵宇飞,. 水利水电工程岩基抗剪强度参数二维分布模型构造的Copula方法[J]. , 2016, 37(3): 783-792.
[3] 魏新江 ,刘安远 ,王新泉 . 挤土作用下Y型桩侧摩阻力分布模型研究[J]. , 2013, 34(S1): 14-21.
[4] 宋颜金,程国强,郭惟嘉. 采动覆岩裂隙分布及其空隙率特征[J]. , 2011, 32(2): 533-536.
[5] 尹利华,王晓谋,张留俊. 天津软土土性指标概率分布统计分析[J]. , 2010, 31(S2): 462-469.
[6] 谷艳昌,郑东健,郭航忠,何鲜峰. 小湾水电站坝址区三维初始地应力场反演回归分析[J]. , 2008, 29(4): 1015-1020.
[7] 邵小平,石平五,赵国梁,王贵荣. 急斜特厚煤层开采地表沉陷特征立体实验研究[J]. , 2007, 28(8): 1577-1580.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 谭贤君,陈卫忠,杨建平,杨春和. 盐岩储气库温度-渗流-应力-损伤耦合模型研究[J]. , 2009, 30(12): 3633 -3641 .
[2] 魏 星,王 刚,余志灵. 交通荷载下软土地基长期沉降的有限元法[J]. , 2010, 31(6): 2011 -2015 .
[3] 温世亿,李静,苏霞,姚雄. 复杂应力条件下围岩破坏的细观特征研究[J]. , 2010, 31(8): 2399 -2406 .
[4] 毛 宁,张尧亮. 经验公式简便求法典型实例[J]. , 2010, 31(9): 2978 -2982 .
[5] 刘 杰,李建林,屈建军,陈 星,李剑武,骆世威. 基于卸荷岩体力学的大岗山坝肩边坡水平位移发育的多因素影响分析[J]. , 2010, 31(11): 3619 -3626 .
[6] 李伟华,赵成刚,杜楠馨. 软弱饱和土夹层对地铁车站地震响应的影响分析[J]. , 2010, 31(12): 3958 -3963 .
[7] 韩现民. 西格二线关角隧道浅埋砂层段施工技术及力学效应研究[J]. , 2010, 31(S2): 297 -302 .
[8] 蒋臻蔚,彭建兵,王启耀. 西安市地铁3号线不良地质问题及对策研究[J]. , 2010, 31(S2): 317 -321 .
[9] 刘用海,朱向荣,常林越. 基于Casagrande法数学分析确定先期固结压力[J]. , 2009, 30(1): 211 -214 .
[10] 祝 磊,洪宝宁. 粉状煤系土的物理力学特性[J]. , 2009, 30(5): 1317 -1322 .