›› 2016, Vol. 37 ›› Issue (5): 1301-1306.doi: 10.16285/j.rsm.2016.05.011

• 基础理论与实验研究 • 上一篇    下一篇

非饱和含砂细粒土的气体渗透特性研究

彭尔兴1, 2, 3,孙文博1, 2,章定文1, 2, 3,刘松玉1, 2,朱小丹4   

  1. 1.东南大学 交通学院,江苏 南京 210096;2.东南大学 江苏省城市地下工程与环境安全重点实验室,江苏 南京 210096; 3.南京水利科学研究院 水利部土石坝破坏机理与防控技术重点实验室,江苏 南京 210029;4.安徽省电力设计院,安徽 合肥 230601
  • 收稿日期:2014-07-26 出版日期:2016-05-10 发布日期:2018-06-09
  • 通讯作者: 章定文,男,1978年生,博士,教授,博士生导师,主要从事交通岩土工程与环境岩土工程等方面教学与科研工作。E-mail:zhangdw@seu.edu.cn E-mail:349438987@qq.com
  • 作者简介:彭尔兴,男,1986年生,博士研究生,主要从事特殊地基处理与环境岩土工程方面的研究工作。
  • 基金资助:

    国家自然科学基金项目(No. 51578148);水利部土石坝破坏机理与防控技术重点实验室开放研究基金(No. YK914021);中央高校基本科研业务费专项资金项目(No. 2242014R30020);江苏省普通高校研究生科研创新计划资助项目(SJLX_0091, KYLX15_0158);江苏省高校“青蓝工程”优秀青年骨干教师培养对象项目资助。

Air permeability of unsaturated fine sandy soil

PENG Er-xing1, 2, 3, SUN Wen-bo1, 2, ZHANG Ding-wen1, 2, 3, LIU Song-yu1, 2, ZHU Xiao-dan4   

  1. 1. School of Transportation, Southeast University, Nanjing, Jiangsu 210096, China; 2. Jiangsu Key Laboratory of Urban Underground Engineering and Environmental Safety, Southeast University, Nanjing, Jiangsu 210096, China; 3. Key Laboratory of Failure Mechanism and Safety Control Techniques of Earth-Rock Dam of the Ministry of Water Resources, Nanjing Hydraulic Research Institute, Nanjing, Jiangsu 210029, China; 4. Anhui Electric Power Design Institute, Hefei, Anhui 230601, China
  • Received:2014-07-26 Online:2016-05-10 Published:2018-06-09
  • Supported by:

    This work was supported by the National Natural Science foundation of China(51578148), the Key Laboratory Program of Failure Mechanism and Safety Control Techniques of Earth-Rock Dam of the Ministry of Water Resources(YK914021), the Fundamental Research Founds for the Central Universities (2242014R30020), the Research Innovation Program funds for Jiangsu College Graduate(SJLX_0091, KYLX15_0158) and the Personnel Training Found for Outstanding Young Teacher of Qing-lan Project of Higher Education in Jiangsu Province.

摘要: 为了探讨非饱和含砂细粒土的气体渗透规律,制备不同含水率和干密度试样进行气体渗透试验,并基于多孔介质渗流理论分析进气压力、孔隙比和饱和度等对气体渗透率的影响规律,总结了非饱和土中渗透率的经验公式。试验结果表明,随着进气压力的增加,土样气体渗透率测试值逐渐趋于稳定值;含水率较高时,进气压力对土样气体渗透率的影响程度较大;含水率较低时,土样气体渗透率随进气压力增加而变化幅值较小。气体渗透率随土样含水率的增加(或饱和度的增加)呈减小趋势;当含水率低于最优含水率时,气体渗透率变化较小,但当含水率大于最优含水率后,气体渗透率急剧降低;在最优含水率两侧,土样微观结构的差异(絮凝结构和分散结构)是导致气体渗透率发生突变的主要原因;气隙比可有效表征土体孔隙比与饱和度对气体渗透率的影响规律,气体渗透率与气隙比呈良好的幂函数关系,并采用已有文献中试验数据验证了经验公式的合理性。

关键词: 气体渗透率, 进气压力, 最优含水率, 饱和度, 气隙比

Abstract: To investigate the gas permeability performance of unsaturated fine sandy soil, a series of samples with different moisture contents and different dry densities is prepared and air permeability tests are conducted. Based on the porous media permeation theory, the effects of inlet pressure, void ratio, saturation on the air permeability of samples are analyzed, and an empirical formulation of air permeability is proposed. The experimental results demonstrate that air permeability tends to a stable value with the increase of the inlet pressure. The effect of inlet pressure on air permeability is far more obvious for samples with high moisture content than for samples with low moisture content. The increases of moisture content or degree of saturation can result in a decrease in air permeability of sample. When the moisture content is lower than the optimum moisture content, the variation of the air permeability is negligible; however, a rapid decrease in air permeability is observed when the moisture content is higher than the optimum moisture content. The difference of soil microstructure (flocculation structure and dispersion structure) accounts for the air permeability mutation at the two sides of the optimum moisture content. Air void ratio can effectively represent the influence of void ratio and saturation on air permeability. A power function relationship well adapts the relationship of air permeability with air void ratio. Test dates from the literatures also demonstrate the effectiveness of proposed empirical formulation.

Key words: air permeability, inlet pressure, optimum moisture content, saturation, air void ratio

中图分类号: 

  • TU 411

[1] 杨凯旋, 侯天顺. 击实试验类型对EPS颗粒轻量土击实特性的 影响规律[J]. 岩土力学, 2020, 41(6): 1971-1982.
[2] 陶帅, 董毅, 韦昌富, . 环境湿度可控的土体小应变刚度试验系统[J]. 岩土力学, 2020, 41(6): 2132-2142.
[3] 盛建龙, 韩云飞, 叶祖洋, 程爱平, 黄诗冰, . 粗糙裂隙水、气两相流相对渗透系数模型与数值分析[J]. 岩土力学, 2020, 41(3): 1048-1055.
[4] 邹远晶, 韦昌富, 陈合龙, 周家作, 万义钊, . 基于扰动状态概念的含水合物土弹塑性模型[J]. 岩土力学, 2019, 40(7): 2653-2662.
[5] 谌文武, 刘 伟, 王 娟, 孙冠平, 吴玮江, . 黄土饱和度与B值关系试验研究[J]. 岩土力学, 2019, 40(3): 834-842.
[6] 李 军, 张 杨, 胡大伟, 周 辉, 卢景景, 吕 涛, 史林肯, . 花岗岩三轴循环加卸载条件下的气体渗透率[J]. 岩土力学, 2019, 40(2): 693-700.
[7] 李晶, 陈育民, 方志, 高晗, 飞田哲男, 周葛, . 减饱和砂土缓倾场地的液化性状分析[J]. 岩土力学, 2019, 40(11): 4352-4360.
[8] 张志红, 陈 杨, 张志亮, 田改垒. 高饱和条件下水-力-化耦合模型及数值模拟[J]. 岩土力学, 2018, 39(S2): 100-106.
[9] 陈合龙,韦昌富,田慧会,魏厚振,. 气饱和含CO2水合物砂的三轴压缩试验[J]. , 2018, 39(7): 2395-2402.
[10] 伍海清,白 冰,李小春,刘明泽,何媛媛, . CO2地质封存中储层流体压力演化规律的解析模型[J]. , 2018, 39(6): 2099-2105.
[11] 蒋明镜,刘 俊,周 卫,奚邦禄, . 一个深海能源土弹塑性本构模型[J]. , 2018, 39(4): 1153-1158.
[12] 巢志明,王环玲,徐卫亚,贾朝军,赵 恺,. 一种快速制备不同含水饱和度岩石试样的方法[J]. , 2018, 39(3): 1109-1114.
[13] 仇浩淼,夏唐代,郑晴晴,周 飞, . 饱和冻土中弹性体波传播特性影响参数研究[J]. , 2018, 39(11): 4053-4062.
[14] 钱劲松,李嘉洋,周 定,凌建明. 考虑吸力效应的非饱和黏土回弹模量预估模型[J]. , 2018, 39(1): 123-128.
[15] 洪成雨,刘子雄,张孟喜,周 奇,. 灌浆压力与上覆土压力对土钉摩阻力的影响研究[J]. , 2017, 38(S2): 317-322.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!