岩土力学 ›› 2022, Vol. 43 ›› Issue (5): 1215-1225.doi: 10.16285/j.rsm.2021.1508

• 基础理论与实验研究 • 上一篇    下一篇

含陡缓倾结构面反倾岩坡折断面演化特征 的离心试验研究

杨豪1,魏玉峰1,裴向军1,张御阳1,2   

  1. 1. 成都理工大学 地质灾害防治与地质环境保护国家重点实验室,四川 成都 610059;2. 四川省地震局,四川 成都 610044
  • 收稿日期:2021-09-06 修回日期:2021-12-20 出版日期:2022-05-11 发布日期:2022-05-02
  • 通讯作者: 魏玉峰,男,1979年生,博士,教授,博士生导师,主要从事地质工程、岩土工程的科研和教学工作。E-mail: weiyufeng@cdut.edu.cn E-mail:2216868003@qq.com
  • 作者简介:杨豪,男,1993年生,硕士,主要从事岩土体稳定性方面的研究。
  • 基金资助:
    国家自然科学基金(No. 42072303);国家重点研发计划项目(No. 2017YFC1501000)。

Centrifugal test study of fracture evolution characteristics of anti-dip rock slope with steep and gently dipping structural plane

YANG Hao1, WEI Yu-feng1, PEI Xiang-jun1, ZHANG Yu-yang1,2   

  1. 1. State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, Sichuan 610059, China; 2. Sichuan Earthquake Administration, Chengdu, Sichuan 610044, China
  • Received:2021-09-06 Revised:2021-12-20 Online:2022-05-11 Published:2022-05-02
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (42072303), and the National Key R & D Program of China (2017YFC1501000).

摘要: 为研究含陡缓倾结构面的反倾岩坡在自重条件下的折断面演化特征,以苗尾水电站右坝肩倾倒变形体为地质原型,通过在坡体内不同部位预置切割岩层的非贯通裂缝开展离心模型试验,模拟反倾岩坡在自重条件下的折断面演化特征。研究表明:(1)含陡缓倾结构面的反倾岩坡破坏以折断面的形成为标志,折断面的形成分为3个阶段:初期(0~40g,g为重力加速度)为局部岩层断裂阶段,以岩层局部断裂及后缘岩层前倾为主要破坏特征,坡体表面位移变化量较小;中期(40g~80g)主折断面形成阶段,坡体深部结构面自上而下断裂扩展连接形成主折断面,坡体表面位移变化量约占总位移量的3/4;后期(80g~120g)为多级折断面形成阶段,以坡体内部断裂岩层应力重分布为主要变形特征,坡体表面位移基本保持不变。(2)结构面间岩桥断裂具有瞬时性,但折断面的形成是渐变发展的过程,主要受陡倾结构面控制,主折断面处裂缝应变量最大,受力方式最为复杂,次级折断面处裂缝应变量次之。(3)基于断裂力学,简化了复杂应力状态下含结构面的反倾岩坡压剪断裂判据和岩层不平衡力公式,揭示了主折断面处岩层不平衡力呈现由坡体高度1/3处向坡底和坡顶两侧变小的规律,折断面的形成主要受剪应力与正应力的强度因子比值、岩层结构面长度和裂纹率共同影响。

关键词: 反倾层状岩坡, 离心机试验, 裂缝扩展, 岩桥断裂, 折断面形成

Abstract: In order to study the evolution characteristics of the fracture plane of the anti-dip rock slope with the steep and gently dipping structural plane under the condition of its own weight. Taking the toppling deformation form of right abutment of Miaowei Hydropower Station as the geological prototype, the centrifugal model test was carried out by presetting non-penetrating cracks of the rock strata in different parts of the slope body to simulate the evolution characteristics of the fracture surface of the anti-dip rock slope under the condition of its own weight. The researches have demonstrated that: (1) The failure of anti-dip rock slopes with steep and gently dipping structural planes are marked by the formation of fracture surfaces, which are divided into three stages: in the initial period (0–40g, g is the acceleration of gravity), it refers to the stage of partial fracturation which takes partial fracturation and stratum forwarding on the trailing edge as the major failure characteristics with less position changes in slope plane. In the middle period (40g–80g), it refers to the formation stage of major fracture plane which can be formed in the deep structural plane of slope through expansion and connection in a top-down approach. Position changes in slope nearly account for 3/4 of total position changes. In the later period (80g–120g), it refers to the formation stage of multi-stage fracture plane whose main formation feature is the stress redistribution of fracture strata within the slope. Position changes in slope basically remain unchanged. (2) The fracture of rock bridge between structural planes is transient, but the formation of fracture plane is a gradual development process which is mainly controlled by steep-inclined structural planes. The strain at the crevice of the main fracture plane is the greatest and the stress mode is the most complex. And the fracture strain at the secondary fracture plane takes the second place. Based on fracture mechanics, the fracture criteria of the rock compression-shear and unbalanced force formula for rock stratum have been simplified. It is revealed that the unbalanced force of the rock stratum at the main fracture surface decreases from 1/3 of the slope height to the bottom and top of the slope. The formation of fracture surface is mainly affected by the ratio of the intensity factor of shear stress to normal stress, the length of rock structure plane and the crack rate.

Key words: anti-dip stratigraphic slope, centrifuge test, crack propagation, fracture of rock bridge, fracture plane formation

中图分类号: 

  • TU 457
[1] 张钰彬, 黄丹. 页岩水力压裂过程的态型近场动力学模拟研究[J]. 岩土力学, 2019, 40(7): 2873-2881.
[2] 张 帆, 马 耕, 冯 丹, . 大尺寸真三轴煤岩水力压裂模拟试验 与裂缝扩展分析[J]. 岩土力学, 2019, 40(5): 1890-1897.
[3] 李静, 孔祥超, 宋明水, 汪勇, 王昊, 刘旭亮, . 储层岩石微观孔隙结构对岩石力学特性 及裂缝扩展影响研究[J]. 岩土力学, 2019, 40(11): 4149-4156.
[4] 姜婷婷,张建华,黄 刚, . 煤岩水力压裂裂缝扩展形态试验研究[J]. , 2018, 39(10): 3677-3684.
[5] 蔡奇鹏,吴宏伟,胡 平,陈星欣,郭力群,. 隐伏裂缝对互层胶结土中正断层扩展影响研究[J]. , 2017, 38(7): 2015-2021.
[6] 王 禹,高广运,顾晓强,宋 健,. 渗透系数对砂土液化震陷影响的数值研究[J]. , 2017, 38(6): 1813-1818.
[7] 王 磊,杨春和,侯振坤,郭印同,魏元龙,蒋廷学,. 预制横缝条件下水力裂缝的起裂和扩展[J]. , 2016, 37(S1): 88-94.
[8] 汪明武,赵奎元,朱其坤,徐新宇. 可液化场地微型桩地震响应特性研究[J]. , 2016, 37(6): 1543-1549.
[9] 龚迪光,曲占庆,李建雄,曲冠政,曹彦超,郭天魁. 基于ABAQUS平台的水力裂缝扩展有限元模拟研究[J]. , 2016, 37(5): 1512-1520.
[10] 侯振坤 ,杨春和 ,王 磊 ,刘鹏君 ,郭印同 ,魏元龙 ,李 芷,. 大尺寸真三轴页岩水平井水力压裂物理模拟试验与裂缝延伸规律分析[J]. , 2016, 37(2): 407-414.
[11] 刘春原,朱 楠,赵献辉,王文静. 湖泊相软土真空堆载联合预压法的离心机试验研究[J]. , 2015, 36(S1): 310-314.
[12] 李 刚 ,张金利 ,杨 庆 ,蒋明镜 ,徐光明,. 人工岛沉降的离心机模型试验与数值分析[J]. , 2015, 36(8): 2249-2254.
[13] 潘林华 ,程礼军 ,张士诚 ,郭天魁 ,柳凯誉,. 页岩储层体积压裂裂缝扩展机制研究[J]. , 2015, 36(1): 205-211.
[14] 邵 磊 ,迟世春 . 堆石料单轴流变试验的颗粒流模拟[J]. , 2013, 34(5): 1487-1494.
[15] 刘杏红,周创兵,常晓林,周 伟. 大体积混凝土温度裂缝扩展过程模拟[J]. , 2010, 31(8): 2666-2670.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .