岩土力学 ›› 2023, Vol. 44 ›› Issue (4): 1130-1141.doi: 10.16285/j.rsm.2022.0746

• 岩土工程研究 • 上一篇    下一篇

万福矿深埋大断面T型交叉点高预应力NPR支护机制及应用

孙晓明1, 2,齐振敏1, 2,缪澄宇1, 2,臧金诚3,高祥3,赵成伟4,张勇1, 2   

  1. 1. 中国矿业大学(北京) 深部岩土力学与地下工程国家重点实验室,北京 100083;2. 中国矿业大学(北京)力学与建筑工程学院,北京 100083; 3. 兖煤万福能源有限公司,山东 菏泽 274922;4. 中国科学院武汉岩土力学研究所,湖北 武汉 430060
  • 收稿日期:2022-05-19 接受日期:2022-07-27 出版日期:2023-04-18 发布日期:2023-04-29
  • 通讯作者: 缪澄宇,男,1992年生,博士,博士后,主要从事岩土工程与软岩巷道支护方面研究工作。E-mail: mcycumtb@163.com E-mail:sunxiaoming@cumtb.edu.cn
  • 作者简介:孙晓明,男,1970年生,博士,教授,博士生导师,主要从事岩土工程与软岩巷道支护方面的教学与研究工作。
  • 基金资助:
    国家自然科学基金(No.51874311,No.51904306);中央高校基本科研业务费专项资金(No.2022YJSSB03)。

Supporting mechanism and application of high pre-stress NPR in surrounding rock of deeply-buried large section T-type intersection in Wanfu coal mine

SUN Xiao-ming1, 2, QI Zhen-min1, 2, MIAO Cheng-yu1, 2, ZANG Jin-cheng3, GAO Xiang3, ZHAO Cheng-wei4, ZHANG Yong1, 2   

  1. 1. State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining & Technology Beijing, Beijing 100083, China; 2. School of Mechanics and Civil Engineering, China University of Mining & Technology Beijing, Beijing 100083, China; 3. Yanmei Wanfu Energy Co., Ltd., Heze, Shandong 274922, China; 4. Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430060, China
  • Received:2022-05-19 Accepted:2022-07-27 Online:2023-04-18 Published:2023-04-29
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51874311, 51904306) and the Fundamental Research Funds for the Central Universities (2022YJSSB03).

摘要: 为解决深部大断面软岩巷道交叉点大变形问题,以万福煤矿千米深井巷道交叉点为工程实例,首次在巷道支护中运用微观负泊松比(negative Poisson’s ration,NPR)钢锚索。采用室内试验、理论分析、数值模拟及现场试验相结合的方法,分析了深埋巷道交叉点的围岩变形机制,提出了以微观NPR钢锚索为核心的控制对策。通过室内静力拉伸试验对微观NPR钢锚索的力学特性进行研究,结果表明,微观NPR钢锚索拉伸全过程表现为高恒阻,均匀拉伸,无屈服平台,破断时无明显颈缩现象。通过理论推导,基于T型巷道交叉点围岩最大影响范围,建立微观NPR钢锚索支护T型巷道交叉口最大影响范围计算模型。通过数值模拟,再现T型巷道交叉口的破坏演化过程,分析对比普通支护/微观NPR钢锚索支护效果。现场开展支护应用试验与监测,验证了长短微观NPR钢锚索联合支护对策具有良好的交叉口围岩大变形控制效果,为交叉口围岩安全稳定控制提供了新支护材料和支护手段。

关键词: 千米深井, 大断面, T型巷道交叉点, 微观NPR钢锚索, 巷道支护

Abstract: In order to tackle the problem of large deformation at the crossover point of deep large section soft rock tunnel, this paper takes the crossover point of kilometer deep tunnel in Wanfu coal mine as an engineering example and applies microscopic negative Poisson’s ration (NPR) steel anchor cable in tunnel support for the first time. The deformation mechanism of the surrounding rock at the intersection of deeply buried roadways is analyzed, and a control countermeasure with microscopic NPR steel anchor cables as the core is put forward by using a combination of laboratory test, theoretical analysis, numerical simulation and field test. The mechanical properties of microscopic NPR steel anchor cables are studied by static tensile test in laboratory. The results show that the whole process of microscopic NPR steel anchor cables is characterized by high constant resistance, uniform tension, no yield platform, no obvious necking effect at break. Based on theoretical deduction and the maximum influence range of surrounding rock at T-type tunnel intersection, a calculation model of the maximum influence range of T-type tunnel intersection supported by microscopic NPR steel anchor cable is established. Through numerical simulation, the failure evolution process of T-shaped tunnel intersection is reproduced, and compared with the support effect of common microscopic NPR steel anchor cable. On-site support application test and monitoring are carried out. It verifies that the long-short microscopic NPR steel anchor cable combined support strategy has good control effect on large deformation of surrounding rocks at the intersection, which provides new support materials and means for safety and stability control of surrounding rocks at the intersection.

Key words: kilometer deep well, large section, T-type tunnel intersection, microscopic NPR steel anchor cable, roadway support

中图分类号: 

  • TU457
[1] 刘学生, 范德源, 谭云亮, 王新, ALEXEY Agafangelovich, . 深部动载作用下超大断面硐室群锚固围岩破坏失稳机制研究[J]. 岩土力学, 2021, 42(12): 3407-3418.
[2] 程利兴, 姜鹏飞, 杨建威, 朱阳涛, 郑仰发, 张镇, 李冰冰, . 深井孤岛工作面巷道围岩采动应力分区演化特征[J]. 岩土力学, 2020, 41(12): 4078-4086.
[3] 李 栋, 卢义玉, 荣 耀, 周东平, 郭臣业, 张尚斌, 张承客, . 基于定向水力压裂增透的大断面瓦斯 隧道快速揭煤技术[J]. 岩土力学, 2019, 40(1): 363-369.
[4] 刘 聪,李术才,周宗青,李利平,王 康,侯福金, 秦承帅,高成路,. 复杂地层超大断面隧道施工围岩力学特征模型试验[J]. , 2018, 39(9): 3495-3504.
[5] 江 贝,李术才,王 琦,王富奇,张若祥,. 基于上限法的深部大断面回采巷道顶板锚索设计方法研究[J]. , 2017, 38(8): 2351-2354.
[6] 刘泉声,彭星新,雷广峰,王俊涛,张 静,肖龙鸽4. 特大断面浅埋暗挖隧道十字岩柱开挖技术模型试验研究[J]. , 2017, 38(10): 2780-2788.
[7] 关振长,龚振峰,罗志彬,陈仁春,何 川,. 特大断面隧道地震动力特性的振动台试验研究[J]. , 2016, 37(9): 2553-2560.
[8] 张广超,何富连. 大断面综放沿空巷道煤柱合理宽度与围岩控制[J]. , 2016, 37(6): 1721-1728.
[9] 李 雪 ,周顺华 ,宫全美 ,陈长江, . 大断面深埋高水压地铁盾构隧道周边土压力作用模式评价[J]. , 2015, 36(5): 1415-1420.
[10] 何历超 ,王梦恕 ,李宇杰 , . 浅埋大跨小间距黄土隧道支护技术研究[J]. , 2013, 34(S2): 306-310.
[11] 石钰锋 ,阳军生 ,邵华平 ,龙 云 ,杨 峰 . 超浅覆大断面暗挖隧道下穿富水河道施工风险分析及控制研究[J]. , 2012, 33(S2): 229-234.
[12] 严 红,何富连,徐腾飞,蒋红军,高 升. 高应力大断面煤巷锚杆索桁架系统试验研究[J]. , 2012, 33(S2): 257-262.
[13] 蒋 坤 ,夏才初 ,卞跃威. 节理岩体中双向八车道小净距隧道施工方案优化分析[J]. , 2012, 33(3): 841-847.
[14] 原小帅,张庆松,李术才,李利平,刘 钦. 超大断面炭质千枚岩隧道新型支护结构长期稳定性研究[J]. , 2011, 32(S2): 556-561.
[15] 扈世民,张顶立,李鹏飞,陈峰宾,张 翾. 大断面黄土隧道初期支护适应性研究[J]. , 2011, 32(S2): 660-665.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 谭贤君,陈卫忠,杨建平,杨春和. 盐岩储气库温度-渗流-应力-损伤耦合模型研究[J]. , 2009, 30(12): 3633 -3641 .
[2] 魏 星,王 刚,余志灵. 交通荷载下软土地基长期沉降的有限元法[J]. , 2010, 31(6): 2011 -2015 .
[3] 温世亿,李静,苏霞,姚雄. 复杂应力条件下围岩破坏的细观特征研究[J]. , 2010, 31(8): 2399 -2406 .
[4] 刘 杰,李建林,屈建军,陈 星,李剑武,骆世威. 基于卸荷岩体力学的大岗山坝肩边坡水平位移发育的多因素影响分析[J]. , 2010, 31(11): 3619 -3626 .
[5] 蒋臻蔚,彭建兵,王启耀. 西安市地铁3号线不良地质问题及对策研究[J]. , 2010, 31(S2): 317 -321 .
[6] 刘用海,朱向荣,常林越. 基于Casagrande法数学分析确定先期固结压力[J]. , 2009, 30(1): 211 -214 .
[7] 李兴高,刘维宁. 挡土结构上水-土压力分算的进一步探讨[J]. , 2009, 30(2): 419 -424 .
[8] 祝 磊,洪宝宁. 粉状煤系土的物理力学特性[J]. , 2009, 30(5): 1317 -1322 .
[9] 周春梅,章泽军,徐大杰,王生维,李先福. 古构造应力场数值模拟及危险性预测研究[J]. , 2009, 30(7): 2141 -2146 .
[10] 孙长帅,杨海巍,徐光黎. 岩石锚杆基础抗拔承载力计算方法探究[J]. , 2009, 30(S1): 75 -78 .