岩土力学 ›› 2023, Vol. 44 ›› Issue (5): 1341-1352.doi: 10.16285/j.rsm.2022.0884

• 基础理论与实验研究 • 上一篇    下一篇

Si/Ca复合体系改性分散土的崩解特性及作用机制研究

刘翼飞1, 2,布泽凡3,蔡东廷1, 2,樊恒辉1, 2,张卓1, 2,茹含1, 2,巨娟丽1, 2   

  1. 1. 西北农林科技大学 水利与建筑工程学院,陕西 杨凌 712100;2. 西北农林科技大学 岩土工程研究所/特殊岩土博物馆,陕西 杨凌 712100; 3. 哈尔滨工程大学 航天与建筑工程学院,黑龙江 哈尔滨 150001
  • 收稿日期:2022-06-10 接受日期:2022-08-05 出版日期:2023-05-09 发布日期:2023-04-30
  • 通讯作者: 樊恒辉,男,1973 年生,博士,研究员,博士生导师,主要从事特殊土的工程性质、土质化学加固原理与技术、环境岩土工程等研究工作。E-mail: yt07@nwsuaf.edu.cn E-mail:hitachi@nwafu.edu.cn
  • 作者简介:刘翼飞,男,1997年生,硕士,主要从事特殊土的工程性质及改良技术的研究工作。
  • 基金资助:
    国家自然科学基金项目(No. 52079116,No. 51579215,No. 52108343)

Disintegration characteristics and mechanism of dispersive soil modified by Si/Ca compound system

LIU Yi-fei1, 2, BU Ze-fan3, CAI Dong-ting1, 2, FAN Heng-hui1, 2, ZHANG Zhuo1, 2, RU Han1, 2, JU Juan-li1,2   

  1. 1. College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; 2. Institute of Geotechnical Engineering /Museum of Problematic Rock and Soil, Northwest A&F University, Yangling, Shaanxi 712100, China; 3. College of Acrospace Civil Engineering, Harbin Engineering University, Harbin, Heilongjiang 150001, China
  • Received:2022-06-10 Accepted:2022-08-05 Online:2023-05-09 Published:2023-04-30
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(52079116, 51579215, 52108343).

摘要: 分散土具有遇水分散流失的特性,在工程实践中常采用石灰、水泥等进行改性,但存在环境污染等问题。选取纳米硅溶胶和氯化钙组成 Si/Ca 复合体系作为分散土的改性材料,采用针孔试验、泥球试验、分散崩解试验研究改性效果,通过物理化学性质等试验分析作用机制。试验结果表明,单一纳米硅溶胶在25%掺量下可完全消除分散性;单一氯化钙在0.40%掺量下可完全消除分散性;1%纳米硅溶胶与 0.05% 氯化钙组成的 Si/Ca 复合体系可完全消除土体分散性,有效减少单独使用两种材料的掺量。纳米硅溶胶改性土的崩解过程与分散土存在差异,其最终崩解时间较短,且崩解速率更稳定;与氯化钙共同作用时,最终崩解时间进一步缩短,崩解速率增大。Si/Ca 复合体系改性分散土的作用机制包括降低土体的交换性钠离子百分比和pH、形成水化硅酸钙等。研究表明,由纳米硅溶胶和氯化钙组成 Si/Ca 复合体系可有效改性分散土。

关键词: 分散土, 纳米硅溶胶, 氯化钙, 崩解特性, 改性机制

Abstract: Dispersive soil has the characteristic of being dispersed and lost when encountering water. In engineering practice, lime and cement are often used to modify dispersive soil, but doing so often has such problems as environmental pollution. The Si/Ca compound system composed of nano-silica sol and calcium chloride is selected as the modified material for dispersive soil. The effect of the modification is studied by pinhole test, mud ball test, and dispersion and disintegration test. The mechanism of dispersive soil modified by Si/Ca compound system is explored by physical and chemical properties tests. The results show that the dispersibility of soil can be completely eliminated by using nano-silica sol alone at 25% dosage or using calcium chloride alone at 0.40% dosage. However, the Si/Ca compound system composed of 1% nano-silica sol and 0.05% calcium chloride can also completely eliminate the dispersion of soil, which effectively reduces the dosage of the two materials used alone. The disintegration process of the soil modified by nano-silica sol modified is different from that of dispersive soil, with a shorter final disintegration time and a more stable disintegration rate. The final disintegration time is further shortened and the disintegration rate increases when the nano-silica sol and calcium chloride are used together. The mechanism of dispersive soil modified by Si/Ca compound system includes reducing the percentage of exchangeable sodium ions and the pH of the soil, and generating calcium silicate hydrate. The results demonstrate that the Si/Ca compound system composed of nano silica sol and calcium chloride can effectively modify the dispersive soil.

Key words: dispersive soil, nano-silica sol, calcium chloride, disintegration characteristics, modification mechanism

中图分类号: 

  • TU 411
[1] 刘杰, 崔瑜瑜, 卢正, 姚海林, . 分散土分散性影响因素及其判别方法初探[J]. 岩土力学, 2022, 43(S1): 237-244.
[2] 姬胜戈, 王宝仲, 杨秀娟, 樊恒辉. 木质素磺酸钙改性分散性土的试验研究[J]. 岩土力学, 2021, 42(9): 2405-2415.
[3] 潘 艺,刘 镇,周翠英, . 红层软岩遇水崩解特性试验及其界面模型[J]. , 2017, 38(11): 3231-3239.
[4] 张 丹 ,陈安强 ,刘刚才 . 紫色泥岩水热条件下崩解过程的分维特性[J]. , 2012, 33(5): 1341-1346.
[5] 刘清秉,项 伟,张伟锋,崔德山. 离子土壤固化剂改性膨胀土的试验研究[J]. , 2009, 30(8): 2286-2290.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 于小军,施建勇,徐杨斌. 考虑各向异性的软黏土扰动状态本构模型[J]. , 2009, 30(11): 3307 -3312 .
[2] 高 玮. 基于蚁群聚类算法的岩石边坡稳定性分析[J]. , 2009, 30(11): 3476 -3480 .
[3] 徐 彬,殷宗泽,刘述丽. 膨胀土强度影响因素与规律的试验研究[J]. , 2011, 32(1): 44 -50 .
[4] 代仁平,郭学彬,宫全美,蒲传金,张志呈. 隧道围岩爆破损伤防护的霍普金森压杆试验[J]. , 2011, 32(1): 77 -83 .
[5] 杨 洋, 姚海林,卢 正. 蒸发条件下路基对气候变化的响应模型及影响因素分析[J]. , 2009, 30(5): 1209 -1214 .
[6] 邓亚虹,夏唐代,彭建兵,李喜安,黄强兵. 水平层状场地自振频率的剪切质点系法研究[J]. , 2009, 30(8): 2489 -2494 .
[7] 左宇军 ,李术才 ,秦泗凤 ,李利平. 对隔水底板破断突水机制的突变理论分析的认识——兼对潘岳教授等提问的答复[J]. , 2011, 32(7): 2236 -2240 .
[8] 楚锡华. 颗粒材料数值样本的坐标排序生成技术[J]. , 2011, 32(9): 2852 -2855 .
[9] 王忠福 ,刘汉东 ,贾金禄 ,黄志全 ,姜 彤 . 大直径深长钻孔灌注桩竖向承载力特性试验研究[J]. , 2012, 33(9): 2663 -2670 .
[10] 林鲁生 ,蒋 刚 ,白世伟 ,刘祖德 . 土体抗剪强度参数取值的统计分析方法[J]. , 2003, 24(2): 277 -280 .