岩土力学 ›› 2021, Vol. 42 ›› Issue (9): 2405-2415.doi: 10.16285/j.rsm.2021.0151

• 基础理论与实验研究 • 上一篇    下一篇

木质素磺酸钙改性分散性土的试验研究

姬胜戈,王宝仲,杨秀娟,樊恒辉   

  1. 西北农林科技大学 水利与建筑工程学院,陕西 杨凌 712100
  • 收稿日期:2021-01-26 修回日期:2021-05-06 出版日期:2021-09-10 发布日期:2021-08-30
  • 通讯作者: 樊恒辉,男,1973年生,博士,研究员,博士生导师,主要从事特殊土的工程性质、土质化学加固原理与技术、环境岩土工程等研究工作。E-mail: yt07@nwsuaf.edu.cn E-mail: kj1205757@163.com
  • 作者简介:姬胜戈,男,1995年生,硕士,从事特殊性土的工程性质及改良技术的研究工作
  • 基金资助:
    国家重点研发计划项目(No.2017YFC0504703);国家自然科学基金(No.51579215,No.51379177);陕西省自然科学基础研究计划项目(No.2020JQ-278)。

Experimental study of dispersive clay modified by calcium lignosulfonate

JI Sheng-ge, WANG Bao-zhong, YANG Xiu-juan, FAN Heng-hui   

  1. College of Water Conservancy and Architectural Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
  • Received:2021-01-26 Revised:2021-05-06 Online:2021-09-10 Published:2021-08-30
  • Supported by:
    This work was supported by the National Key Research and Development Program of China(2017YFC0504703), the National Natural Science Foundation of China(51579215, 51379177) and the Natural Science Basic Research Program of Shaanxi(2020JQ-278).

摘要: 分散性土属于一种水敏性土,具有遇水分散流失的特征。通过分散性试验、力学性质试验、化学性质试验、微观结构试验及模拟降雨冲刷试验,研究了木质素磺酸钙改性分散性土的影响因素及其改性机制。试验结果表明,随着木质素磺酸钙掺量的增加,改性土的分散性、崩解性和抗冲蚀性均逐渐改善,在掺量达到3.0%时即有着良好的改性效果;无侧限抗压强度先增大后减小,压缩系数呈先减小后增大的趋势,均在0.5%掺量时取得极值。随着养护龄期的延长,改性土的分散性和崩解性逐渐降低,压缩系数显著减小,抗压强度逐渐增大。28 d龄期时,0.5%掺量和3.0%掺量改性土的抗压强度较分散性土分别提升了50%和20%。木质素磺酸钙主要通过双电层厚度降低、阳离子桥接、颗粒胶结和疏水基斥水作用来改善分散性土的工程特性,但掺量过高时,木质素磺酸钙会优先与自身结合并减弱土颗粒间的吸引力,使得土体孔隙率增大、力学性能下降。研究表明,木质素磺酸钙对分散性土具有良好的改性作用,可显著改善黏性土的水敏性,提高土体的水稳性和抗冲蚀性。

关键词: 分散性土, 木质素磺酸盐, 力学性质, 改性机制, 模拟降雨冲刷

Abstract: Dispersive clay is a type of water sensitive soils, which has the characteristics of dispersing and material losing when encountering water. The influence factors and modification mechanism of dispersive clay modified by calcium lignosulfonate were studied using dispersity tests, mechanical property tests, chemical property tests, microstructure tests and simulated rainfall scouring tests. The results indicated that with the increase of calcium lignosulfonate content, the dispersity, disintegration and erosion resistance of the modified soil were gradually improved, and it had a good modification effect when the content reached 3.0%; the unconfined compressive strength first increased and then decreased, and the compression coefficient first decreased and then increased, and both achieved extreme values at 0.5% content. With the increase of curing age, the dispersity and disintegration of the modified soil decreased gradually, the compression coefficient decreased significantly, and the compressive strength increased gradually. At the age of 28 days, the unconfined compressive strengths of the modified soil at 0.5% and 3.0% contents were increased by 50% and 20% respectively, compared with that of dispersive clay. The engineering properties of dispersive clay were improved by the addition of calcium lignosulfonate mainly through reduction of thickness for electric double layer, cation bridging, particle cementation and hydrophobic effect of hydrophobic group. However, when the content of calcium lignosulfonate was too large, the calcium lignosulfonate would preferentially combine with itself and weaken the attraction between soil particles, which would increase the porosity and decrease the mechanical properties of soil. The research concludes that calcium lignosulfonate has a good modifying effect on the dispersive clay, which can significantly improve the water sensitivity, water stability and erosion resistance of clay.

Key words: dispersive clay, lignosulfonate, mechanical properties, modification mechanism, simulated rainfall scouring

中图分类号: 

  • TU411
[1] 马成昊, 朱长歧, 刘海峰, 崔翔, 王天民, 姜开放, 易明星, . 土的颗粒形貌研究现状及展望[J]. 岩土力学, 2021, 42(8): 2041-2058.
[2] 彭守建, 王瑞芳, 许江, 甘青青, 蔡果良, . 二次炭化温度对热压型煤力学性质 及微观结构影响的试验研究[J]. 岩土力学, 2021, 42(5): 1221-1229.
[3] 李驰, 史冠宇, 武慧敏, 王翠艳, 高瑜, . 基于脲酶诱导碳酸钙沉积的微生物矿化技术 在分散性土改良中应用的试验研究[J]. 岩土力学, 2021, 42(2): 333-342.
[4] 孟庆彬, 王杰, 韩立军, 孙稳, 乔卫国, 王刚, . 极弱胶结岩石物理力学特性及本构模型研究[J]. 岩土力学, 2020, 41(S1): 19-29.
[5] 赵怡晴, 吴常贵, 金爱兵, 孙浩, . 热处理砂岩微观结构及力学性质试验研究[J]. 岩土力学, 2020, 41(7): 2233-2240.
[6] 张善凯, 冷先伦, 盛谦, . 卢氏膨胀岩湿胀软化特性研究[J]. 岩土力学, 2020, 41(2): 561-570.
[7] 易雪枫, 刘春康, 王宇. 金属矿尾废胶结充填体破裂演化过程 原位CT扫描试验研究[J]. 岩土力学, 2020, 41(10): 3365-3373.
[8] 刘波, 马永君, 盛海龙, 常雅儒, 于俊杰, 贾帅龙, . 白垩系红砂岩冻结融化后的力学性质试验研究[J]. 岩土力学, 2019, 40(S1): 161-171.
[9] 韩钢, 周辉, 陈建林, 张传庆, 高阳, 宋桂红, 洪望兵, . 白鹤滩水电站层间错动带工程地质特性[J]. 岩土力学, 2019, 40(9): 3559-3568.
[10] 朱才辉, 崔 晨, 兰开江, 东永强. 砖-土结构劣化及入侵建筑物拆除 对榆林卫城稳定性影响[J]. 岩土力学, 2019, 40(8): 3153-3166.
[11] 肖晓春, 樊玉峰, 吴迪, 丁鑫, 王磊, 赵宝友, . 组合煤岩破坏过程能量耗散特征及冲击危险评价[J]. 岩土力学, 2019, 40(11): 4203-4212.
[12] 杨 昊,张晋勋,单仁亮,武福美,郭志明,. 冻结饱水单裂隙岩体力学特性试验研究[J]. , 2018, 39(4): 1245-1255.
[13] 侯 鑫,马 巍,李国玉,穆彦虎,周志伟,王 飞,. 木质素磺酸盐对兰州黄土力学性质的影响[J]. , 2017, 38(S2): 18-26.
[14] 王 鹏,舒 才,施 峰,胡国忠,王宏图,. 不同砂胶比、密度和含水性相似材料力学性质正交试验研究[J]. , 2017, 38(S2): 229-235.
[15] 蒋 毅,魏思宇,尚彦军,高 强,李严严,. 深部复合地层力学性质研究[J]. , 2017, 38(S2): 266-272.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .