岩土力学 ›› 2021, Vol. 42 ›› Issue (5): 1221-1229.doi: 10.16285/j.rsm.2020.1355

• 基础理论与实验研究 • 上一篇    下一篇

二次炭化温度对热压型煤力学性质 及微观结构影响的试验研究

彭守建1, 2,王瑞芳1, 2,许江1, 2,甘青青1, 2,蔡果良1, 2   

  1. 1. 重庆大学 煤矿灾害动力学与控制国家重点实验室,重庆 400044;2. 重庆大学 资源与安全学院,重庆 400044
  • 收稿日期:2020-09-08 修回日期:2021-01-12 出版日期:2021-05-11 发布日期:2021-05-07
  • 作者简介:彭守建,男,1983年生,博士,教授,博士生导师,主要从事矿山岩石力学及多场耦合渗流力学方面的教学与研究工作
  • 基金资助:
    国家自然科学基金项目(No. 51974041,No. 52074047);重庆市基础与前沿研究计划项目(No. cstc2018jcyjAX0626)

Experimental study of the effect of secondary carbonization temperature on mechanical properties and microstructure of hot-pressed coal briquette specimens

PENG Shou-jian1, 2, WANG Rui-fang1, 2, XU Jiang1, 2, GAN Qing-qing1, 2, CAI Guo-liang1, 2   

  1. 1. State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; 2. School of Resource s and Safety Engineering, Chongqing University, Chongqing 400044, China
  • Received:2020-09-08 Revised:2021-01-12 Online:2021-05-11 Published:2021-05-07
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51974041,52074047) and the Basic and Frontier Research Projects of Chongqing (cstc2018jcyjAX0626).

摘要: 为了使型煤试件与原煤的性质更加接近,提高相关物理模拟试验研究与工程实际的吻合度,通过改变温度条件制备二次炭化热压型煤,对其单轴压缩力学特性、渗流特性及微观结构进行了测试分析,考察温度对二次炭化热压型煤力学性质及微观结构特性的影响。结果表明:(1)随着炭化温度升高,二次炭化热压型煤试件的单轴抗压强度表现出先升高后降低的趋势,在300 ℃炭化温度条件下其单轴抗压强度与原煤较为接近;(2)在三轴压缩条件下,二次炭化热压型煤试件的渗透率随轴压增大呈现先减小后增大的演化规律,其初始渗透率和最小渗透率均随着炭化温度升高而增大;(3)二次炭化热压型煤与原煤在FT-IR有机官能团测试中的特征峰位置基本保持一致,但所对应的特征峰强度有所差异,且在300 ℃和450 ℃炭化温度条件下二次炭化热压型煤红外谱图的官能团响应与原煤最为接近;(4)二次炭化热压型煤相较于原煤,其孔径分布更为均匀,微孔占比少,比表面积小,且随着炭化温度升高,二次炭化热压型煤的平均孔径和比表面积呈现先降后增的趋势,并在300 ℃炭化温度条件下其孔径和比表面积相对最小。研究成果可为二次炭化热压型煤成型条件优化及二次炭化型煤力学特性研究提供参考。

关键词: 型煤, 二次炭化, 炭化温度, 力学性质, 渗流特性

Abstract: In order to make the properties of the coal briquette specimens(CBS) been closer to that of the raw coal specimens(RCS), and to improve the consistency between the relevant physical simulation test and the actual engineering, uniaxial compression mechanical properties, seepage characteristics and microstructure of the secondary carbonized hot-pressed CBS are tested and analyzed by changing the temperature conditions, and effects of temperature on the mechanical properties and microstructure of the briquette are also investigated. The results show that: (1) With the increase of carbonization temperature, an increase followed by a decrease is observed in the uniaxial compressive strength of secondary carbonized hot-pressed CBS. When the carbonization temperature is 300℃, its uniaxial compressive strength is close to that of RCS. (2) Under triaxial compression, the permeability of the hot-pressed CBS firstly decreases and then increases with the increase of axial compression, and the initial permeability shows an increasing trend with the increase of carbonization temperature. (3) The characteristic peak positions of the secondary carbonized hot-pressed CBS and RCS in the FT-IR organic functional group test are basically consistent. However, the corresponding characteristic peak strength is different, and the functional group response of the infrared spectrum of the secondary carbonized hot-pressed CBS at 300℃ and 450℃ is the closest to that of the RCS. (4) Compared with the RCS, the secondary carbonized hot-pressed CBS has a more uniform pore size distribution with a small proportion of micropore and small specific surface area. Moreover, as the carbonization temperature increases, the average pore size and specific surface area of the secondary hot-pressed CBS firstly decrease and then increase. Additionally, the pore size and specific surface area are relatively the smallest when the carbonization temperature is 300℃. The research results can provide references for the optimization of forming conditions of secondary carbonized hot-pressed CBS and the study of mechanical properties of secondary carbonized briquette.

Key words: coal briquette specimen, secondary carbonization, carbonization temperature, mechanical properties, seepage characteristics

中图分类号: 

  • TD 315
[1] 姬胜戈, 王宝仲, 杨秀娟, 樊恒辉. 木质素磺酸钙改性分散性土的试验研究[J]. 岩土力学, 2021, 42(9): 2405-2415.
[2] 马成昊, 朱长歧, 刘海峰, 崔翔, 王天民, 姜开放, 易明星, . 土的颗粒形貌研究现状及展望[J]. 岩土力学, 2021, 42(8): 2041-2058.
[3] 孟庆彬, 王杰, 韩立军, 孙稳, 乔卫国, 王刚, . 极弱胶结岩石物理力学特性及本构模型研究[J]. 岩土力学, 2020, 41(S1): 19-29.
[4] 王珂, 盛金昌, 郜会彩, 田晓丹, 詹美礼, 罗玉龙, . 应力−渗流侵蚀耦合作用下粗糙裂隙渗流特性研究[J]. 岩土力学, 2020, 41(S1): 30-40.
[5] 赵怡晴, 吴常贵, 金爱兵, 孙浩, . 热处理砂岩微观结构及力学性质试验研究[J]. 岩土力学, 2020, 41(7): 2233-2240.
[6] 艾迪昊, 李成武, 赵越超, 李光耀, . 煤体静载破坏微震、电磁辐射及裂纹扩展特征研究[J]. 岩土力学, 2020, 41(6): 2043-2051.
[7] 张善凯, 冷先伦, 盛谦, . 卢氏膨胀岩湿胀软化特性研究[J]. 岩土力学, 2020, 41(2): 561-570.
[8] 付宏渊, 蒋煌斌, 邱祥, 姬云鹏, . 低应力与覆水环境下单裂隙粉砂质泥岩渗流特性[J]. 岩土力学, 2020, 41(12): 3840-3850.
[9] 段玲玲, 邓华锋, 齐豫, 李冠野, 彭萌. 水-岩作用下单裂隙灰岩渗流特性演化规律研究[J]. 岩土力学, 2020, 41(11): 3671-3679.
[10] 易雪枫, 刘春康, 王宇. 金属矿尾废胶结充填体破裂演化过程 原位CT扫描试验研究[J]. 岩土力学, 2020, 41(10): 3365-3373.
[11] 刘波, 马永君, 盛海龙, 常雅儒, 于俊杰, 贾帅龙, . 白垩系红砂岩冻结融化后的力学性质试验研究[J]. 岩土力学, 2019, 40(S1): 161-171.
[12] 韩钢, 周辉, 陈建林, 张传庆, 高阳, 宋桂红, 洪望兵, . 白鹤滩水电站层间错动带工程地质特性[J]. 岩土力学, 2019, 40(9): 3559-3568.
[13] 李博, 黄嘉伦, 钟振, 邹良超, . 三维交叉裂隙渗流传质特性数值模拟[J]. 岩土力学, 2019, 40(9): 3670-3768.
[14] 王鹏飞, 谭文辉, 马学文, 李子建, 刘景军, 武洋帆, . 不同粗糙度和隙宽贯通充填裂隙 渗流特性试验研究[J]. 岩土力学, 2019, 40(8): 3062-3070.
[15] 朱才辉, 崔 晨, 兰开江, 东永强. 砖-土结构劣化及入侵建筑物拆除 对榆林卫城稳定性影响[J]. 岩土力学, 2019, 40(8): 3153-3166.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 唐明明,王芝银,马兰平,曾志华,张之沛. 油气管道穿越黄土冲沟的管线设计参数研究[J]. , 2010, 31(4): 1314 -1318 .
[2] 林 杭,曹 平,李江腾,江学良,何忠明. 基于Hoek-Brown准则的三维边坡变形稳定性分析[J]. , 2010, 31(11): 3656 -3660 .
[3] 李俊才,纪广强,宋桂华,张 琼,王志亮,严小敏. 高层建筑疏桩筏板基础现场实测与分析[J]. , 2009, 30(4): 1018 -1022 .
[4] 牛文杰,叶为民,刘绍刚,禹海涛. 考虑饱和-非饱和渗流的土坡极限分析[J]. , 2009, 30(8): 2477 -2482 .
[5] 林达明,尚彦军,孙福军,孙元春,吴锋波,刘志强. 岩体强度估算方法研究及应用[J]. , 2011, 32(3): 837 -842 .
[6] 李 辉 ,晏鄂川 ,杨建国 ,吕 坤 . 库水条件下滑坡体与挡墙相互作用研究[J]. , 2012, 33(5): 1593 -1600 .
[7] 王可良,刘 玲,隋同波,徐运海, 胡廷正. 坝体岩基-橡胶粉改性混凝土现场抗剪(断)试验研究[J]. , 2011, 32(3): 753 -756 .
[8] 王 宇 ,李建林 ,邓华锋 ,王瑞红 . 软岩三轴卸荷流变力学特性及本构模型研究[J]. , 2012, 33(11): 3338 -3344 .
[9] 黄志鹏 ,董燕军 ,廖年春 ,尹健民 ,周江平 . 锦屏一级水电站左岸开挖高边坡变形监测分析[J]. , 2012, 33(S2): 235 -242 .
[10] 尹宏磊,徐千军,李仲奎. 膨胀变形对膨胀土边坡稳定性的影响[J]. , 2009, 30(8): 2506 -2510 .