岩土力学 ›› 2020, Vol. 41 ›› Issue (S1): 30-40.doi: 10.16285/j.rsm.2019.1089
王珂1,盛金昌1,郜会彩2,田晓丹1,詹美礼1,罗玉龙1
WANG Ke1, SHENG Jin-chang1, GAO Hui-cai2, TIAN Xiao-dan1, ZHAN Mei-li1, LUO Yu-long1
摘要: 在复杂应力和长期渗流侵蚀作用下岩体裂隙的表面形貌不断发生改变,导致岩体裂隙的渗流特性演化机理更加复杂。开展不同粗糙程度的石灰岩裂隙渗透试验,对比试验结果和渗透试验前后裂隙表面形貌特征,分析应力和渗流侵蚀耦合作用对粗糙裂隙表面形貌的改造影响,研究其渗流特性的演变规律。结果表明,在应力作用下粗糙程度不同的裂隙其渗流量随时间均呈现先快速减小,后趋于稳定的变化规律;不同粗糙度裂隙的等效水力隙宽和渗透率在试验初始时刻基近相等,随后均呈不断减小的趋势,但在应力和渗流侵蚀耦合作用下裂隙表面粗糙度越大,其等效水力隙宽和渗透率的下降幅值越大,试验结束时其稳定值越小;粗糙起伏程度小的裂隙,其渗流路径较均匀,流线平直,而粗糙起伏程度大的裂隙,表面出现沟槽流现象,渗流路径曲折延长;当裂隙表面粗糙凹凸体增多,与渗透水流的接触面积增大,应力和渗流侵蚀作用对裂隙表面形貌的溶蚀改造增强,使表面整体形态更粗糙起伏,而表面形态影响其渗流路径,致使裂隙表面沟槽流现象加剧,反过来影响裂隙渗流特性的演变规律。
中图分类号:
[1] | 侯钦宽, 雍睿, 杜时贵, 徐敏娜, 曹泽敏. 结构面粗糙度统计测量最小样本数确定方法[J]. 岩土力学, 2020, 41(4): 1259-1269. |
[2] | 李博, 黄嘉伦, 钟振, 邹良超, . 三维交叉裂隙渗流传质特性数值模拟[J]. 岩土力学, 2019, 40(9): 3670-3768. |
[3] | 王鹏飞, 谭文辉, 马学文, 李子建, 刘景军, 武洋帆, . 不同粗糙度和隙宽贯通充填裂隙 渗流特性试验研究[J]. 岩土力学, 2019, 40(8): 3062-3070. |
[4] | 张天军, 庞明坤, 蒋兴科, 彭文清, 纪翔, . 负压对抽采钻孔孔周煤体瓦斯渗流特性的影响[J]. 岩土力学, 2019, 40(7): 2517-2524. |
[5] | 郑安兴, 罗先启, 陈振华, . 基于扩展有限元法的岩体水力劈裂耦合模型[J]. 岩土力学, 2019, 40(2): 799-808. |
[6] | 王鹏飞, 李长洪, 马学文, 李子建, 刘景军, 武洋帆, . 断层带不同含石率土石混合体渗流特性试验研究[J]. 岩土力学, 2018, 39(S2): 53-61. |
[7] | 杨圣奇,陆家炜,田文岭,唐劲舟,. 不同节理粗糙度类岩石材料三轴压缩力学特性试验研究[J]. , 2018, 39(S1): 21-32. |
[8] | 丁红岩,贾 楠,张浦阳, . 砂土中筒型基础沉放过程渗流特性和沉贯阻力研究[J]. , 2018, 39(9): 3130-3138. |
[9] | 罗先启,郑安兴,. 岩体裂隙模拟的扩展有限元法应用研究[J]. , 2018, 39(2): 728-734. |
[10] | 王志良,申林方,李邵军,徐则民,. 基于格子Boltzmann方法的岩体单裂隙面渗流特性研究[J]. , 2017, 38(4): 1203-1210. |
[11] | 宋磊博,江 权,李元辉,杨成祥,冉曙光,王百林,刘 挺,. 基于剪切行为结构面形貌特征的描述[J]. , 2017, 38(2): 525-533. |
[12] | 王昌硕,王亮清,葛云峰,梁 烨,孙自豪,董曼曼,张 楠. 基于统计参数的二维节理粗糙度系数非线性确定方法[J]. , 2017, 38(2): 565-573. |
[13] | 李利平,柳 尚,李术才,石少帅,陈迪杨,周 毅,林 鹏,王健华,刘 聪,. 应力-渗流耦合三轴渗透试验系统研制及其在充填介质渗透特性试验中的应用[J]. , 2017, 38(10): 3053-3061. |
[14] | 盛金昌 ,白柯含 ,杨 旭 ,郑忠巍 , 詹美礼 , 孙永军 , 杨 慧,. 膨润土防水毯破损条件下渗流特性试验研究[J]. , 2015, 36(S2): 315-320. |
[15] | 康向涛 ,黄 滚 ,宋真龙 ,邓博知 ,罗甲渊 ,张 鑫 , . 三轴压缩下含瓦斯煤的能耗与渗流特性研究[J]. , 2015, 36(3): 762-768. |
|