岩土力学 ›› 2020, Vol. 41 ›› Issue (6): 2043-2051.doi: 10.16285/j.rsm.2019.0899
艾迪昊1, 2,李成武1,赵越超1,李光耀1
AI Di-hao1, 2, LI Cheng-wu1, ZHAO Yue-chao1, LI Guang-yao1
摘要: 为研究型煤在单轴压缩破裂过程中产生的微震、电磁辐射信号与裂纹演化特征的对应关系,利用自主设计的低噪声静态加载试验系统,对0~0.25、0.25~0.5、0.5~1.0、1~2 mm共4种不同粒度的型煤进行了单轴压缩破坏试验,同步采集了煤样破坏过程中的微震、电磁辐射信号及破坏视频图像,提出了一种煤体裂纹快速提取方法并计算了型煤裂纹面积的变化规律。研究结果表明:型煤在单轴压缩过程中产生的微震、电磁辐射信号及裂纹面积在时域上具有良好的同步性。型煤破坏过程中裂纹面积随时间变化曲线可分为4个阶段。第1阶段为压实阶段,煤样所受应力值较小,其表面的裂纹面积以极为缓慢的速率增加。第2阶段为初始破裂阶段,随着应力的增加和内部弹性势能的积聚,型煤表面裂纹面积的增加速率较压实阶段有明显提高,伴随产生许多细小裂纹。第3阶段为加速破裂阶段,随着应力继续增加以及材料内部积聚弹性能的释放,试样变形过程加速,导致裂纹面积增速进一步增大。第4阶段为卸压阶段,试样的裂纹面积达到最大值,承载能力急剧降低,发生失稳破坏。
中图分类号:
[1] | 刘成禹, 石俊杰, 罗洪林, 程凯, 陈博文, . 隧道变形过程中电磁辐射强度参数的变化规律[J]. 岩土力学, 2020, 41(8): 2722-2729. |
[2] | 陈炳瑞, 冯夏庭, 符启卿, 王搏, 朱新豪, 李涛, 陆菜平, 夏欢, . 综合集成高精度智能微震监测技术 及其在深部岩石工程中的应用[J]. 岩土力学, 2020, 41(7): 2422-2431. |
[3] | 毛浩宇, 徐奴文, 李彪, 樊义林, 吴家耀, 孟国涛, . 基于离散元模拟和微震监测的白鹤滩水电站左岸地下厂房稳定性分析[J]. 岩土力学, 2020, 41(7): 2470-2484. |
[4] | 潘锐, 程桦, 王雷, 王凤云, 蔡毅, 曹广勇, 张朋, 张皓杰, . 巷道浅层破碎围岩锚注加固承载特性试验研究[J]. 岩土力学, 2020, 41(6): 1887-1898. |
[5] | 金爱兵, 王树亮, 王本鑫, 孙浩, 陈帅军, 朱东风, . 基于DIC的3D打印交叉节理试件破裂机制研究[J]. 岩土力学, 2020, 41(12): 3862-3872. |
[6] | 李晓照, 班力壬, 戚承志, . 高渗透压脆性岩石蠕变宏−细观力学模型研究[J]. 岩土力学, 2020, 41(12): 3987-3995. |
[7] | 赵金帅, 裴书锋, 徐进鹏, 江权, 陈炳瑞, . 开挖扰动下地下交叉洞室错动带岩体微震演化规律[J]. 岩土力学, 2020, 41(11): 3789-3796. |
[8] | 金爱兵, 王树亮, 王本鑫, 孙浩, 赵怡晴, . 基于DIC技术的3D打印节理试件破裂机制研究[J]. 岩土力学, 2020, 41(10): 3214-3224. |
[9] | 张国凯, 李海波, 王明洋, 李晓锋, . 基于声学测试和摄像技术的单裂隙岩石 裂纹扩展特征研究[J]. 岩土力学, 2019, 40(S1): 63-72. |
[10] | 陈炳瑞, 吴昊, 池秀文, 刘辉, 伍梦蝶, 晏俊伟, . 基于STA/LTA岩石破裂微震信号实时识 别算法及工程应用[J]. 岩土力学, 2019, 40(9): 3689-3696. |
[11] | 蒋若辰, 徐奴文, 戴峰, 周家文. 基于快速行进迎风线性插值的微震定位算法研究[J]. 岩土力学, 2019, 40(9): 3697-3708. |
[12] | 张传庆, 刘振江, 张春生, 周辉, 高阳, 侯靖, . 隐晶质玄武岩破裂演化及破坏特征试验研究[J]. 岩土力学, 2019, 40(7): 2487-2496. |
[13] | 李桐, 冯夏庭, 王睿, 肖亚勋, 王勇, 丰光亮, 姚志宾, 牛文静, . 深埋隧道岩爆位置偏转及其微震活动特征[J]. 岩土力学, 2019, 40(7): 2847-2854. |
[14] | 王海军, 郁舒阳, 任然, 汤雷, 李欣昀, 贾宇, . 基于3D-ILC含内裂纹孔口脆性固体断裂特性试验[J]. 岩土力学, 2019, 40(6): 2200-2212. |
[15] | 杨石扣, 张继勋, 任旭华, . 基于改进数值流形法的接触裂纹问题研究[J]. 岩土力学, 2019, 40(5): 2016-2021. |
|