岩土力学 ›› 2020, Vol. 41 ›› Issue (7): 2422-2431.doi: 10.16285/j.rsm.2019.1062

• 岩土工程研究 • 上一篇    下一篇

综合集成高精度智能微震监测技术 及其在深部岩石工程中的应用

陈炳瑞1, 2,冯夏庭1, 3,符启卿4,王搏4,朱新豪1, 2, 李涛1, 2,陆菜平4,夏欢4   

  1. 1. 中国科学院武汉岩土力学研究所 岩土力学与工程国家重点实验室,湖北 武汉 430071;2. 中国科学院大学,北京 100049; 3. 东北大学 深部金属矿山安全开采教育部重点实验室,辽宁 沈阳 110819;4. 湖北海震科创技术有限公司,湖北 武汉 430072; 5. 中国矿业大学 深部煤炭资源开采教育部重点实验室,江苏 徐州 221116
  • 收稿日期:2019-06-17 修回日期:2019-12-30 出版日期:2020-07-10 发布日期:2020-09-20
  • 作者简介:陈炳瑞,男,1976年生,博士,研究员,博士生导师,主要从事岩石工程灾害孕育过程微震监测与分析技术、预警理论与方法、灾害孕育机制及防护研究工作。
  • 基金资助:
    国家自然科学基金项目(No. 51539002,No. 51479192);中国铁路总公司科技研究开发计划项目(No. 2017G006-B)

Integration and high precision intelligence microseismic monitoring technology and its application in deep rock engineering

CHEN Bing-rui1, 2, FENG Xia-ting1, 3, FU Qi-qing4, WANG Bo4, ZHU Xin-hao1, 2, LI Tao1, 2, LU Cai-ping5, XIA Huan4   

  1. 1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 2.University of Chinese Academy of Sciences,Beijing 100049, China ;3. Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, Northeastern University, Shenyang, Liaoning 110819, China; 4. Hubei Seaquake Technology Co., Ltd., Wuhan, Hubei 430072, China; 5. Key Laboratory of Deep Coal Resource Mining (Ministry of Education), China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
  • Received:2019-06-17 Revised:2019-12-30 Online:2020-07-10 Published:2020-09-20
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51539002, 51479192) and China Railway Corporation Science and Technology Research and Development Project (2017G006-B).

摘要: 通过微震技术获取更多的岩石工程灾害演化过程微震信息,自动识别岩石破裂微震信息,自动精准定位岩石破裂的位置,为灾害分析、预警与防控提供理论与技术支撑,一直是科学家和工程师研究的热点与难点。针对这些难点,研发了传感?采集?传输一体化集成技术、32位A/D与元器件联合降噪采集技术、微震信号递归STA/LTA-BP神经网络综合识别方法以及基于PTP高精度时间同步策略的速度模型数据库速配微震源定位算法,并对这些技术进行了综合集成,提出了综合集成高精度智能微震监测技术。目前该技术已在国内外多个深部岩石工程进行了应用。应用结果表明,该技术既可应用于岩爆、冲击地压等动力型灾害监测,又可应用于岩石工程开挖(开采)围岩稳定性监测,还可推广应用于矿产资源防盗采监测,一定程度上提升了岩石工程灾害演化过程微震信号的捕获能力、岩石破裂微震信号的识别能力和微破裂源的定位精度,推动微震监测技术朝着岩石工程灾害自动监测、分析与智能预警方向快速发展。

关键词: 微震, 识别算法, 定位算法, 岩爆, 滤噪, 岩石工程

Abstract: It has been popular and difficult for scientists and engineers to acquire more microseismic information, automatically identify microseismic data of rock rupture, locate the location of rock rupture automatically and accurately, and provide theoretical and technical support for disaster analysis, early warning, and prevention and control. In view of these difficulties, an integrated and high precision intelligence microseismic monitoring technology was developed. In the microseismic monitoring technology, several innovation techniques are developed, which include that a sensing-acquisition-transmission technology was integrated; the acquisition technology with noise reduction of 32 bits A/D coupled with electric components was established; integrated identification method of microseismic signal including recursive STA/LTA method and BP neural network method was proposed; the microseismic source location algorithm based on the technique of PTP high-precision time synchronization and the algorithm of velocity model fast matching in database was developed. At present, this technique has been applied in many deep rock engineering at home and abroad. The application results show that the developed technique can be applied not only to monitoring dynamic disasters such as rock burst, but also to monitoring the stability of surrounding rockmass in excavation (mining) of rock engineering, and also to monitoring anti-theft mining of mineral resources. From these application cases, it has been show that the capacity of acquiring microseismic signals, identifing microseismic signals of rock rupture automatically, and locating the location of rock rupture accurately was improved during rock engineering disaster evolution using the developed microseismic technique. The developed technique can promote the rapid development of microseismic monitoring technology towards automatic monitoring, analysis and intelligent early warning of rock engineering disasters.

Key words: microseismic, recognition algorithm, location algorithm, rockburst, de-noising method, rock engineering

中图分类号: 

  • TU 452
[1] 张晓君, 李晓程, 刘国磊, 李宝玉, . 卸压孔劈裂局部解危效应试验研究[J]. 岩土力学, 2020, 41(S1): 171-178.
[2] 吝曼卿, 张兰, 刘夕奇, 夏元友, 张电吉, 彭亚利, . 梯度应力作用下模型试件的岩爆破坏细观分析[J]. 岩土力学, 2020, 41(9): 2984-2992.
[3] 毛浩宇, 徐奴文, 李彪, 樊义林, 吴家耀, 孟国涛, . 基于离散元模拟和微震监测的白鹤滩水电站左岸地下厂房稳定性分析[J]. 岩土力学, 2020, 41(7): 2470-2484.
[4] 艾迪昊, 李成武, 赵越超, 李光耀, . 煤体静载破坏微震、电磁辐射及裂纹扩展特征研究[J]. 岩土力学, 2020, 41(6): 2043-2051.
[5] 魏新江, 陈涛涛, 王霄, 朱汉华, . 考虑板间相互作用的圆形隧洞 板裂屈曲型岩爆力学分析[J]. 岩土力学, 2020, 41(11): 3680-3686.
[6] 赵金帅, 裴书锋, 徐进鹏, 江权, 陈炳瑞, . 开挖扰动下地下交叉洞室错动带岩体微震演化规律[J]. 岩土力学, 2020, 41(11): 3789-3796.
[7] 陈炳瑞, 吴昊, 池秀文, 刘辉, 伍梦蝶, 晏俊伟, . 基于STA/LTA岩石破裂微震信号实时识 别算法及工程应用[J]. 岩土力学, 2019, 40(9): 3689-3696.
[8] 蒋若辰, 徐奴文, 戴峰, 周家文. 基于快速行进迎风线性插值的微震定位算法研究[J]. 岩土力学, 2019, 40(9): 3697-3708.
[9] 李桐, 冯夏庭, 王睿, 肖亚勋, 王勇, 丰光亮, 姚志宾, 牛文静, . 深埋隧道岩爆位置偏转及其微震活动特征[J]. 岩土力学, 2019, 40(7): 2847-2854.
[10] 周辉, 陈珺, 张传庆, 朱勇, 卢景景, 姜玥, . 低强高脆岩爆模型材料配比试验研究[J]. 岩土力学, 2019, 40(6): 2039-2049.
[11] 赵振华, 张晓君, 李晓程, . 含卸压孔硬岩应力松弛特性试验研究[J]. 岩土力学, 2019, 40(6): 2192-2199.
[12] 苏国韶, 燕思周, 闫召富, 翟少彬, 燕柳斌, . 真三轴加载条件下岩爆过程的声发射演化特征[J]. 岩土力学, 2019, 40(5): 1673-1682.
[13] 罗丹旎, 苏国韶, 何保煜, . 不同饱水度花岗岩的真三轴岩爆试验研究[J]. 岩土力学, 2019, 40(4): 1331-1340.
[14] 雷文杰, 李金雨, 云美厚, . 采动微地震波传播与衰减特性研究[J]. 岩土力学, 2019, 40(4): 1491-1497.
[15] 严 健, 何 川, 汪 波, 蒙 伟, . 高地温对隧道岩爆发生的影响性研究[J]. 岩土力学, 2019, 40(4): 1543-1550.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 楚锡华,徐远杰. 基于形状改变比能对M-C准则与 D-P系列准则匹配关系的研究[J]. , 2009, 30(10): 2985 -2990 .
[2] 定培中,周 密,张 伟. 混凝土浇筑施工对穿黄隧洞衬砌垫层渗透性影响试验研究[J]. , 2009, 30(10): 3159 -3162 .
[3] 刘小文,常立君,胡小荣. 非饱和红土基质吸力与含水率及密度关系试验研究[J]. , 2009, 30(11): 3302 -3306 .
[4] 翟聚云,卫国祥. 干密度对非饱和膨胀土水分迁移参数的影响[J]. , 2009, 30(11): 3337 -3341 .
[5] 陈 锋,杨海军,杨春和. 盐岩储气库注气排卤期剩余可排卤水分析[J]. , 2009, 30(12): 3602 -3606 .
[6] 贾 超,张强勇,张 宁,刘 健,李术才,杨春和. 盐岩地下储气库风险分级机制初探[J]. , 2009, 30(12): 3621 -3626 .
[7] 兰四清,王玉林,谢康和. 径向双侧壁排水软土地基固结数学模型及解析解[J]. , 2009, 30(12): 3871 -3875 .
[8] 徐舜华,郑 刚,徐光黎. 循环荷载下砂土的剪切硬化边界面本构模型[J]. , 2010, 31(1): 1 -8 .
[9] 孙树林,李 方,谌 军. 掺石灰黏土电阻率试验研究[J]. , 2010, 31(1): 51 -55 .
[10] 张莎莎,谢永利,杨晓华,戴志仁. 典型天然粗粒盐渍土盐胀微观机制分析[J]. , 2010, 31(1): 123 -127 .