岩土力学 ›› 2020, Vol. 41 ›› Issue (7): 2411-2421.doi: 10.16285/j.rsm.2019.2145

• 基础理论与实验研究 • 上一篇    下一篇

流量对水力压裂破裂压力和增压率的影响研究

邵长跃1, 2,潘鹏志1, 2,赵德才3,姚天波3,苗书婷1, 2,郁培阳1, 2   

  1. 1. 中国科学院武汉岩土力学研究所 岩土力学与工程国家重点实验室,湖北 武汉 430071;2. 中国科学院大学,北京 100049; 3. 贵州水利投资(集团)有限责任公司,贵州 贵阳 550081
  • 收稿日期:2019-12-22 修回日期:2020-05-06 出版日期:2020-07-10 发布日期:2020-09-20
  • 通讯作者: 潘鹏志,男,1976年生,博士,研究员,主要从事裂隙岩体变形破坏机理与连续?非连续数值方法方面的研究工作。E-mail: pzpan@whrsm.ac.cn E-mail:550760111@qq.com
  • 作者简介:邵长跃,男,1995年生,硕士研究生,主要从事水力压裂方面的研究。
  • 基金资助:
    国家重点研发计划项目(No.2017YFC0804203)。

Effect of pumping rate on hydraulic fracturing breakdown pressure and pressurization rate

SHAO Chang-yue1, 2, PAN Peng-zhi1, 2, ZHAO De-cai3, YAO Tian-bo3, MIAO Shu-ting1, 2, YU Pei-yang1, 2   

  1. 1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. Guizhou Water Conservancy Investment Group CO.LTD, Guiyang, Guizhou 550081, China
  • Received:2019-12-22 Revised:2020-05-06 Online:2020-07-10 Published:2020-09-20
  • Supported by:
    This work was supported by the National Key Research and Development Program of China (2017YFC0804203).

摘要:

水力压裂现场原位测试试验的破裂压力是计算构造地应力的重要参数。为了探究流量对水力压裂破裂压力和增压率的影响,设计4种不同恒定流量情况的低渗透硬脆灰岩室内大型水力压裂试验,结合声发射监测技术分析不同流量下水力裂缝破裂压力、破坏模式和缝网复杂程度的规律以及流量与增压率的内在关系。试验结果表明:流量越大,破裂压力越高,缝网复杂程度越低;典型压力?时间曲线分为缓慢增压段、急速增压段、稳定增压段和突然下降段;稳定增压段增压率保持不变,压力随时间线性增长,其增压率的大小和流量存在明显的线性关系;基于流量与稳定增压段增压率的线性关系,考虑流量因素的Ito理论可以很好地定量解释流量对破裂压力的影响,试验结果与理论预测吻合度较高。

关键词: 水力压裂, 流量, 增压率, 破裂压力, 低渗透硬脆岩石

Abstract: The breakdown pressure of the pressure-time curve obtained from the in-situ test is an important parameter for calculating the tectonic stress. In order to investigate the influence of pumping rate on breakdown pressure and pressurization rate, four large-scale hydraulic fracturing experiments on low-permeability hard and brittle limestone with varying constant pumping rate were conducted. Acoustic emission monitoring technique was used to investigate how varying pumping rate affected breakdown pressure, failure mode and complexity of fracture network as well as internal relationship between pumping rate and pressurization rate. The experimental results show that the pumping rate has a significant effect on the breakdown pressure. A larger pumping rate results in a higher breakdown pressure and a lower complexity of fracture network. The typical pressure-time curve consists of a slow boosting stage, a rapid boosting stage, a stable boosting stage and a sudden drop stage. Pressure increases linearly with time during the stable boosting stage, and there is a clear linear relationship between the pressurization rate and the pumping rate. Using the linear relationship between the pumping rate and the steady-state pressurization rate, the Ito theory can quantitatively explain the dependence of the breakdown pressure on the pumping rate. The theoretical predictions are in good agreement with the experimental results.

Key words: hydraulic fracturing, pumping rate, pressurization rate, breakdown pressure, low permeability hard and brittle rock

中图分类号: 

  • TU 452
[1] 彭守建, 郭世超, 许江, 郭臣业, 张超林, 贾立, . 采动诱导应力集中对顺层钻孔瓦斯抽采 影响的试验研究[J]. 岩土力学, 2019, 40(S1): 99-108.
[2] 武晋文, 冯子军, 梁栋, 鲍先凯, . 单轴应力下带钻孔花岗岩注入高温蒸汽 破坏特征研究[J]. 岩土力学, 2019, 40(7): 2637-2644.
[3] 张钰彬, 黄丹. 页岩水力压裂过程的态型近场动力学模拟研究[J]. 岩土力学, 2019, 40(7): 2873-2881.
[4] 张 帆, 马 耕, 冯 丹, . 大尺寸真三轴煤岩水力压裂模拟试验 与裂缝扩展分析[J]. 岩土力学, 2019, 40(5): 1890-1897.
[5] 徐辰宇, 白 冰, 刘明泽, . 注CO2条件下花岗岩破裂特征的试验研究[J]. 岩土力学, 2019, 40(4): 1474-1482.
[6] 张 昭, 程靖轩, 刘奉银, 齐吉琳, 柴军瑞, 李会勇, . 基于土颗粒级配预测非饱和 渗透系数函数的物理方法[J]. 岩土力学, 2019, 40(2): 549-560.
[7] 汪华斌, 李建梅, 金怡轩, 周 博, 周 宇, . 降雨诱发边坡破坏数值模拟两个关键问题 的解决方法[J]. 岩土力学, 2019, 40(2): 777-784.
[8] 许江, 宋肖徵, 彭守建, 张超林, 李奇贤, 张小蕾, . 顺层钻孔布置间距对煤层瓦斯抽采效果影响的 物理模拟试验研究[J]. 岩土力学, 2019, 40(12): 4581-4589.
[9] 朱旻, 龚晓南, 高翔, 刘世明, 严佳佳, . 基于流体体积法的劈裂注浆有限元分析[J]. 岩土力学, 2019, 40(11): 4523-4532.
[10] 李 栋, 卢义玉, 荣 耀, 周东平, 郭臣业, 张尚斌, 张承客, . 基于定向水力压裂增透的大断面瓦斯 隧道快速揭煤技术[J]. 岩土力学, 2019, 40(1): 363-369.
[11] 梁天成,刘云志,付海峰,严玉忠,修乃岭,王 臻. 多级循环泵注水力压裂模拟实验研究[J]. , 2018, 39(S1): 355-361.
[12] 程 万, 蒋国盛, 周治东, 魏子俊, 张 宇, 王炳红, 赵 林, . 水平井中多条裂缝同步扩展时裂缝竞争机制[J]. 岩土力学, 2018, 39(12): 4448-4456.
[13] 姜婷婷,张建华,黄 刚, . 煤岩水力压裂裂缝扩展形态试验研究[J]. , 2018, 39(10): 3677-3684.
[14] 周 斌,严 俊,刘斯宏,杨茂盛,. 结点虚流量法理论基础阐释及改进算法[J]. , 2018, 39(1): 349-355.
[15] 严成增. 模拟水压致裂的另一种二维FDEM-flow方法[J]. , 2017, 38(6): 1789-1796.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 姜领发,陈善雄,于忠久. 饱和土中任意形状衬砌对稳态压缩波的散射[J]. , 2009, 30(10): 3063 -3070 .
[3] 赵成刚,蔡国庆. 非饱和土广义有效应力原理[J]. , 2009, 30(11): 3232 -3236 .
[4] 孔位学,芮勇勤,董宝弟. 岩土材料在非关联流动法则下剪胀角选取探讨[J]. , 2009, 30(11): 3278 -3282 .
[5] 姜德义,陈 结,刘建平,周丽君,王春荣. 应力损伤盐岩的声波、溶解试验研究[J]. , 2009, 30(12): 3569 -3573 .
[6] 赖远明,张 耀,张淑娟,金 龙,常小晓. 超饱和含水率和温度对冻结砂土强度的影响[J]. , 2009, 30(12): 3665 -3670 .
[7] 毛昶熙,段祥宝,吴良骥. 砂砾土各级颗粒的管涌临界坡降研究[J]. , 2009, 30(12): 3705 -3709 .
[8] 肖衡林,余天庆. 山区挡土墙土压力的现场试验研究[J]. , 2009, 30(12): 3771 -3775 .
[9] 余 俊,尚守平,李 忠,任 慧. 饱和土中桩水平振动引起土层复阻抗分析研究[J]. , 2009, 30(12): 3858 -3864 .
[10] 张莎莎,谢永利,杨晓华,戴志仁. 典型天然粗粒盐渍土盐胀微观机制分析[J]. , 2010, 31(1): 123 -127 .