岩土力学 ›› 2020, Vol. 41 ›› Issue (6): 1887-1898.doi: 10.16285/j.rsm.2019.1448

• 基础理论与实验研究 • 上一篇    下一篇

巷道浅层破碎围岩锚注加固承载特性试验研究

潘锐1, 2, 3,程桦1,王雷3, 4,王凤云1, 2,蔡毅1, 2, 曹广勇1,张朋3,张皓杰3   

  1. 1. 安徽建筑大学 建筑结构与地下工程安徽省重点实验室,安徽 合肥 230601;2. 安徽建筑大学 土木工程学院,安徽 合肥 230601; 3. 山东大学 岩土与结构工程研究中心,山东 济南 250061;4. 鲁东大学 土木工程学院,山东 烟台 264025
  • 收稿日期:2019-08-21 修回日期:2019-11-28 出版日期:2020-06-11 发布日期:2020-08-02
  • 作者简介:潘锐,男,1987年生,博士,讲师,主要从事地下工程支护方面的研究
  • 基金资助:
    国家自然科学基金(No.51904006,No.51874188,No.51704125,No.51674154);安徽建筑大学科研项目(No.2019QDZ03)。

Experimental study on bearing characteristics of bolt-grouting support in shallow fractured surrounding rock of roadway

PAN Rui1, 2, 3, CHENG Hua1, WANG Lei3, 4, WANG Feng-yun1, 2, CAI Yi1, 2, CAO Guang-yong1, ZHANG Peng3, ZHANG Hao-jie3   

  1. 1. Anhui Province Key Laboratory of Building Structure and Underground Engineering, Anhui Jianzhu University, Hefei, Anhui 230601, China; 2. School of Civil Engineering, Anhui Jianzhu University, Hefei, Anhui 230601, China; 3. Research Center of Geotechnical and Structural Engineering, Shandong University, Jinan, Shandong 250061, China; 4. School of Civil Engineering, Ludong University, Yantai, Shandong 264025, China
  • Received:2019-08-21 Revised:2019-11-28 Online:2020-06-11 Published:2020-08-02
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51904006, 51874188, 51704125, 51674154) and the Research Program of Anhui Jianzhu University (2019QDZ03).

摘要: 为明确巷道浅层破碎围岩锚注加固承载特性,开展了不同岩体粒径、岩性、锚杆数量等因素影响下对比试验。研究结果表明:(1)试件承载能力随粒径增大呈现先增大后减小的趋势,与相同条件下无锚试件相比,含锚试件峰值应力平均提高了53.38%,峰值应变平均减小了46.43%。(2)含锚条件下,与支护面相对的自由面及附近为宏观破裂优先发展区域,支护面破坏一般均滞后于自由面,试件由拉伸破坏为主,逐渐过渡到拉剪混合式破坏;无锚条件下,试件以拉伸破坏为主。(3)锚杆数量增加,试件承载能力逐渐增大,但是增长速率逐渐变缓,峰值应变减缓与峰值应力增长拐点一致。(4)试件具有渐进再破坏的3个特征:一是应力峰值前产生的裂纹在峰后阶段继续扩展;二是支护面表面材料随着裂纹拉伸产生剥落;三是裂纹由表面逐渐向试件内部发展,先是岩块脱落,随后宏观破坏发展到锚杆区域,造成试件整体承载能力丧失。

关键词: 破碎围岩, 锚注加固, 岩体粒径, 承载特性, 裂纹扩展

Abstract: To clarify the bearing characteristics of bolt-grouting support in shallow fractured surrounding rock of roadway, comparative bolt-grouting bearing capacity test was carried out with different rock particle sizes, lithologies, and number of bolts. The results show that: 1) the bearing capacity of the bolt-grouting increases first and then decreases with increasing the particle size. Compared with the non-anchored specimens under the same conditions, the peak stress of the anchored specimens increases by 53.38% on average, and the peak strain decreases by 46.43% on average. 2) Under anchored condition, the free surface opposite to the supporting surface and its vicinity are the preferred area for macro-fracture development. The failure of supporting surface generally lags behind the free surface, and the specimens gradually transit from mainly tensile failure to tensile-shear mixed failure; tensile failure is the main failure mode of specimens under the condition of no anchor. 3) With the increase of bolt number, the bearing capacity of bolt-grouting increases gradually, but the growth rate slows down gradually. The peak strain slows down, which is consistent with the inflection point of peak stress growth. 4) The specimens have three characteristics of progressive destruction: firstly, the cracks generated before peak stress continue to propagate after peak stress; secondly, the surface material of support surface spalls with the crack stretching; thirdly, the cracks gradually develop from surface to inside of the specimens, the rock fragments fall off first, and then the macro-damage develops to the anchor area, resulting in the loss of overall specimen bearing capacity.

Key words: fractured surrounding rock, bolt-grouting support, rock particle size, bearing characteristics, crack propagation

中图分类号: 

  • TD 35
[1] 邓玮婷, 丁选明, 彭宇, . 珊瑚砂地基中膨胀混凝土桩竖向受压承载性能研究[J]. 岩土力学, 2020, 41(8): 2814-2820.
[2] 张磊, 海维深, 甘浩, 曹卫平, 王铁行, . 水平与上拔组合荷载下柔性单桩 承载特性试验研究[J]. 岩土力学, 2020, 41(7): 2261-2270.
[3] 杨济铭, 张小勇, 张福友, 曾超峰, 梅国雄, . 砂土中桩-土-承台协同作用下桩基 承载特性细观研究[J]. 岩土力学, 2020, 41(7): 2271-2282.
[4] 邹新军, 曹雄, 周长林, . 砂土地基中受水流影响的竖向力−水平力联合 受荷桩承载特性模型试验研究[J]. 岩土力学, 2020, 41(6): 1855-1864.
[5] 艾迪昊, 李成武, 赵越超, 李光耀, . 煤体静载破坏微震、电磁辐射及裂纹扩展特征研究[J]. 岩土力学, 2020, 41(6): 2043-2051.
[6] 金爱兵, 王树亮, 王本鑫, 孙浩, 陈帅军, 朱东风, . 基于DIC的3D打印交叉节理试件破裂机制研究[J]. 岩土力学, 2020, 41(12): 3862-3872.
[7] 李晓照, 班力壬, 戚承志, . 高渗透压脆性岩石蠕变宏−细观力学模型研究[J]. 岩土力学, 2020, 41(12): 3987-3995.
[8] 张逍, 徐超, 王裘申, 吴伟成, . 加筋土桥台承载特性的载荷试验研究[J]. 岩土力学, 2020, 41(12): 4027-4034.
[9] 江杰, 王顺苇, 欧孝夺, 付臣志, . 黏土地基中桩顶扭矩-竖向荷载加载路径下 单桩承载特性分析[J]. 岩土力学, 2020, 41(11): 3573-3582.
[10] 张进鹏, 刘立民, 刘传孝, 孙东玲, 邵军, 李扬, . 基于预应力锚和自应力注的深部裂隙 岩体锚注加固机制研究[J]. 岩土力学, 2020, 41(11): 3651-3662.
[11] 金爱兵, 王树亮, 王本鑫, 孙浩, 赵怡晴, . 基于DIC技术的3D打印节理试件破裂机制研究[J]. 岩土力学, 2020, 41(10): 3214-3224.
[12] 李富远, 王忠瑾, 谢新宇, 娄扬, 王奎华, 方鹏飞, 郑凌逶, . 静钻根植能源桩承载特性模型试验研究[J]. 岩土力学, 2020, 41(10): 3307-3316.
[13] 覃玉兰, 邹新军, 曹雄. 均质砂土中水平简谐荷载与扭矩联合 受荷单桩内力、位移分析[J]. 岩土力学, 2020, 41(1): 147-156.
[14] 张国凯, 李海波, 王明洋, 李晓锋, . 基于声学测试和摄像技术的单裂隙岩石 裂纹扩展特征研究[J]. 岩土力学, 2019, 40(S1): 63-72.
[15] 江强强, 焦玉勇, 骆进, 王浩, . 能源桩传热与承载特性研究现状及展望[J]. 岩土力学, 2019, 40(9): 3351-3362.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[3] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[4] 张明义,刘俊伟,于秀霞. 饱和软黏土地基静压管桩承载力时间效应试验研究[J]. , 2009, 30(10): 3005 -3008 .
[5] 郭军辉,程卫国,张 滨. 土工格栅低温下蠕变特性试验研究[J]. , 2009, 30(10): 3009 -3012 .
[6] 荣 冠,王思敬,王恩志,刘顺桂. 白鹤滩河谷演化模拟及P2β3玄武岩级别评估[J]. , 2009, 30(10): 3013 -3019 .
[7] 刘振平,贺怀建,李 强,朱发华. 基于Python的三维建模可视化系统的研究[J]. , 2009, 30(10): 3037 -3042 .
[8] 杜佐龙,黄茂松,李 早. 基于地层损失比的隧道开挖对临近群桩影响的DCM方法[J]. , 2009, 30(10): 3043 -3047 .
[9] 吴 亮,钟冬望,卢文波. 空气间隔装药爆炸冲击荷载作用下混凝土损伤分析[J]. , 2009, 30(10): 3109 -3114 .
[10] 徐远杰,潘家军,刘祖德. 混凝土面板堆石坝的一种坝坡修整算法[J]. , 2009, 30(10): 3139 -3144 .