岩土力学 ›› 2020, Vol. 41 ›› Issue (12): 3987-3995.doi: 10.16285/j.rsm.2020.0453

• 基础理论与实验研究 • 上一篇    下一篇

高渗透压脆性岩石蠕变宏−细观力学模型研究

李晓照1, 2,班力壬1, 2,戚承志1, 2   

  1. 1. 北京建筑大学 土木与交通工程学院,北京 100044;2. 北京建筑大学 北京未来城市设计高精尖创新中心,北京 100044)
  • 收稿日期:2020-04-17 修回日期:2020-07-06 出版日期:2020-12-11 发布日期:2021-01-18
  • 作者简介:李晓照,男,1987年生,博士,副教授,主要从事岩石力学与地下工程方面研究。
  • 基金资助:
    国家自然科学基金(No.51708016,No.51774018);北京市教委科研项目(No.KM202110016014);北京建筑大学金字塔人才培养工程(No. JDYC20200307)。

Study on the mechanical model of macro-mecro creep under high seepage pressure in brittle rocks

LI Xiao-zhao1, 2, BAN Li-ren1, 2, QI Cheng-zhi1, 2   

  1. 1. School of Civil and Transportation Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; 2. Beijing Advanced Innovation Center for Future Urban Design, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
  • Received:2020-04-17 Revised:2020-07-06 Online:2020-12-11 Published:2021-01-18
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(51708016, 51774018), the Research Project of Beijing Municipal Education Commission(KM202110016014) and the Pyramid Talent Training Project of Beijing University of Civil Engineering and Architecture(JDYC20200307).

摘要: 高渗透压对深部地下工程脆性岩石蠕变力学特性有着重要影响。然而,能够解释高渗透压作用脆性岩石完整减速、稳态及加速三级蠕变过程中,细观裂纹扩展与宏观变形关系的宏细观力学模型研究很少。基于考虑含有初始裂纹与新生成翼型裂纹影响的裂纹尖端应力强度模型,引入渗透水压与初始裂纹及新生成翼型裂纹之间的力学关系,建立了考虑渗透水压作用的裂纹尖端应力强度模型;然后结合亚临界裂纹扩展法则,与裂纹及应变损伤关系模型,推出了考虑渗透水压影响的脆性岩石蠕变裂纹扩展与宏观变形关系的宏细观力学模型。当施加轴向应力小于岩石裂纹启裂应力时,岩石近似表现为线弹性变形;当施加轴向应力大于裂纹启裂应力且小于岩石峰值强度,岩石表现为塑性蠕变变形。研究了不同渗透压作用下,分级轴向应力加载岩石蠕变应变时间演化曲线,并通过试验结果验证了模型的合理性。分别讨论了恒定渗透压与分级渗透压,对脆性岩石蠕变过程中裂纹长度、裂纹扩展速率、轴向应变及轴向应变率的影响。该模型为高渗透压深部地下工程围岩稳定性评价提供了重要理论依据。

关键词: 脆性岩石, 蠕变, 高渗透水压, 裂纹扩展, 宏细观模型

Abstract: High seepage pressure has a great significance on creep behaviors of brittle rocks under deep underground engineering. However, the macro-mecro relationship between mecrocrack growth and macroscopic deformation under high seepage pressure during the decelerated, steady-state, accelerated creep has been rarely studied. In this study, based on the stress intensity model of crack tips with the influence of initial cracks and new wing cracks, the mechanical relationship between seepage pressure and initial cracks and new wing cracks is introduced, and the stress intensity model model of crack tips considering seepage pressure is established. Then combined with the subcritical crack law and crack-strain damage model, a macro-mecro mechanical model is proposed to explain the relationship between creep crack growth and macroscopic deformation of brittle rock considering the influence of seepage pressure. The rock behaves elasticity when the applied axial stress is smaller than the crack initiation stress, while behaves plasticity when the axial stress exceeds the crack initiation stress but is less than the rock peak strength. The theoretical creep curves subjected to step axial loading are studied under different seepage pressures, and the rationality of the proposed model is verified by experimental results. Furthermore, the creep evolution of crack length, crack growth velocity, axial strain, and axial strain rate under constant or step loading seepage pressure are discussed. The new model provides a significant theoretical basis for the evaluation of the stability of surrounding rocks in deep underground engineering under high seepage pressure.

Key words: brittle rocks, creep, high seepage pressure, crack propagation, macro-mecro model

中图分类号: 

  • TU452
[1] 李福林, 杨健, 刘卫群, 范振华, 杨玉贵, . 单轴压缩条件下泥岩加载速率变化效应研究[J]. 岩土力学, 2021, 42(2): 369-378.
[2] 张峰瑞, 姜谙男, 杨秀荣. 孔隙水压力对锯齿状结构面剪切蠕变特性的影响[J]. 岩土力学, 2020, 41(9): 2901-2912.
[3] 李列列, 管俊峰, 肖明砾, 刘海朝, 唐克东, . 一种横观各向同性岩体蠕变模型[J]. 岩土力学, 2020, 41(9): 2922-2930.
[4] 刘家顺, 靖洪文, 孟波, 王来贵, 张向东, 杨建军, . 含水条件下弱胶结软岩蠕变特性 及分数阶蠕变模型研究[J]. 岩土力学, 2020, 41(8): 2609-2618.
[5] 魏尧, 杨更社, 申艳军, 明锋, 梁博, . 白垩系饱和冻结砂岩蠕变试验及本构模型研究[J]. 岩土力学, 2020, 41(8): 2636-2646.
[6] 庄心善, 赵汉文, 王俊翔, 黄勇杰, 胡智. 循环荷载下重塑弱膨胀土滞回曲线 形态特征定量研究[J]. 岩土力学, 2020, 41(6): 1845-1854.
[7] 潘锐, 程桦, 王雷, 王凤云, 蔡毅, 曹广勇, 张朋, 张皓杰, . 巷道浅层破碎围岩锚注加固承载特性试验研究[J]. 岩土力学, 2020, 41(6): 1887-1898.
[8] 艾迪昊, 李成武, 赵越超, 李光耀, . 煤体静载破坏微震、电磁辐射及裂纹扩展特征研究[J]. 岩土力学, 2020, 41(6): 2043-2051.
[9] 陈琼, 崔德山, 王菁莪, 刘清秉. 不同固结状态下黄土坡滑坡滑 带土的蠕变试验研究[J]. 岩土力学, 2020, 41(5): 1635-1642.
[10] 徐毅青, 邓绍玉, 葛琦. 锚索预应力初期与长期损失的预测模型研究[J]. 岩土力学, 2020, 41(5): 1663-1669.
[11] 韩超, 庞德朋, 李德建. 砂岩分级加卸载蠕变试验过程能量演化分析[J]. 岩土力学, 2020, 41(4): 1179-1188.
[12] 王青元, 刘杰, 王培涛, 刘飞, . 冲击扰动诱发蠕变岩石加速失稳破坏试验[J]. 岩土力学, 2020, 41(3): 781-788.
[13] 陈卫忠, 李翻翻, 雷江, 于洪丹, 马永尚, . 热−水−力耦合条件下黏土岩蠕变特性研究[J]. 岩土力学, 2020, 41(2): 379-388.
[14] 张峰瑞, 姜谙男, 杨秀荣, 申发义. 冻融循环下花岗岩剪切蠕变试验与模型研究[J]. 岩土力学, 2020, 41(2): 509-519.
[15] 王立业, 周凤玺, 秦虎, . 饱和盐渍土分数阶蠕变模型及试验研究[J]. 岩土力学, 2020, 41(2): 543-551.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[3] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[4] 张明义,刘俊伟,于秀霞. 饱和软黏土地基静压管桩承载力时间效应试验研究[J]. , 2009, 30(10): 3005 -3008 .
[5] 刘振平,贺怀建,李 强,朱发华. 基于Python的三维建模可视化系统的研究[J]. , 2009, 30(10): 3037 -3042 .
[6] 吴 亮,钟冬望,卢文波. 空气间隔装药爆炸冲击荷载作用下混凝土损伤分析[J]. , 2009, 30(10): 3109 -3114 .
[7] 周晓杰,介玉新,李广信1. 基于渗流和管流耦合的管涌数值模拟[J]. , 2009, 30(10): 3154 -3158 .
[8] 吴昌瑜,张 伟,李思慎,朱国胜. 减压井机械淤堵机制与防治方法试验研究[J]. , 2009, 30(10): 3181 -3187 .
[9] 崔皓东,朱岳明. 二滩高拱坝坝基渗流场的反演分析[J]. , 2009, 30(10): 3194 -3199 .
[10] 赵成刚,蔡国庆. 非饱和土广义有效应力原理[J]. , 2009, 30(11): 3232 -3236 .