岩土力学 ›› 2019, Vol. 40 ›› Issue (S1): 161-171.doi: 10.16285/j.rsm.2019.0049

• 基础理论与实验研究 • 上一篇    下一篇

白垩系红砂岩冻结融化后的力学性质试验研究

刘 波1, 2,马永君1,盛海龙1,常雅儒1,于俊杰1,贾帅龙1   

  1. 1. 中国矿业大学(北京) 力学与建筑工程学院,北京 100083;2. 中国矿业大学(北京) 深部岩土力学与地下工程国家重点实验室,北京 100083
  • 收稿日期:2019-01-08 出版日期:2019-08-01 发布日期:2019-08-16
  • 作者简介:刘波,男,1970年生,博士,教授,博士生导师,主要从事岩土工程、矿山建设工程方面的教学与科研
  • 基金资助:
    国家自然科学基金项目(No.41472259,No.41771083,No.51274209)

Experiments on mechanical properties of Cretaceous red sandstone after freeze-thaw process

LIU Bo1, 2, MA Yong-jun1, SHENG Hai-long1, CHANG Ya-ru1, YU Jun-jie1, JIA Shuai-long1   

  1. 1. School of Mechanics and Civil Engineering, China University of Mining & Technology, Beijing 100083, China; 2. State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining & Technology, Beijing 100083, China
  • Received:2019-01-08 Online:2019-08-01 Published:2019-08-16
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (41472259, 41771083, 51274209).

摘要: 西部煤矿冻结建井穿越岩层以白垩系、侏罗系等富水弱胶结地层为主,在温度场和地应力场的耦合作用下冻结壁岩体经历了一次完整的冻融过程。以白垩系富水弱胶结红砂岩为研究对象,充分考虑红砂岩冻融过程中受到的温度场与地应力场耦合作用环境,基于力学试验得到白垩系弱胶结红砂岩冻结融化后的力学性质及冻融过程中的地应力对红砂岩力学参数的影响,对白垩系弱胶结红砂岩冻融劣化机理及冻融过程中地应力的影响机制进行了分析。冻融过程中围压分别设置为0、2、4、6、8 MPa,冻结温度分别设置为?5、?10、?15 ℃,融化温度统一设置为20 ℃。试验结果表明,白垩系弱胶结红砂岩胶结差、强度低,对冻融作用非常敏感,仅经历一次冻融后单轴抗压强度即下降28.39 %;冻融过程中的地应力提高了白垩系弱胶结红砂岩孔隙裂隙的约束能力,使冻结作用可以尽可能地向次级微孔隙发展,随着冻结程度的加深,红砂岩内部冻胀力进一步增加,损伤加剧,故而融化后的力学参数相对于无围压冻融进一步降低。研究结果为西部地区煤矿冻结建井井壁设计提供了指导。

关键词: 弱胶结红砂岩, 冻融过程, 力学性质, 地应力

Abstract: The boreholes in frozen coal mines of western China mainly cut through the Cretaceous and Jurassic rock formations characterized as water-rich and weakly cemented strata. The rock mass in the frozen wall undergoes a complete freeze-thaw process under the coupling effect of temperature field and crustal stress field. In this paper, considering the coupling effect of the temperature field and the geostress field in the process of freezing and thawing, the Cretaceous water-rich and weakly-bonded red sandstone is selected to see its mechanical properties based on experiments. Meanwhile, the deterioration mechanism of Cretaceous weakly cemented red sandstone induced by freeze-thaw process as well as the influence of crustal stress during the freeze-thaw process are analyzed. During freeze-thaw process, the confining pressures are set to be 0, 2, 4, 6, 8 MPa separately, the freezing temperatures are ?5, ?10, ?15 ℃ separately, and the thawing temperature is 20 ℃ for all samples. The results show that the Cretaceous weakly cemented red sandstone is very sensitive to freezing and thawing process because of its very poor cementation and low strength. After only one freeze-thaw cycle, the uniaxial compression strength decreases 28.39%. The crustal stress during the freeze-thaw process enhances the binding forces of pores and cracks of Cretaceous weakly cemented red sandstone, therefore the freezing fully develops to the secondary micro-cracks. Due to the further development of freezing effect, the frozen-heave force in the red sandstone increases, strengthening the damage of red sandstone. Therefore, the mechanical properties of red sandstone after melting are further reduced relative to the non-confined freezing and thawing condition. The experimental results in this paper is helpful for the design of shaft lining of borehole located in the frozen coal mines in western China.

Key words: weakly cemented red sandstone, freeze-thaw process, mechanical properties, crustal stress

中图分类号: 

  • TU 452
[1] 孟庆彬, 王杰, 韩立军, 孙稳, 乔卫国, 王刚, . 极弱胶结岩石物理力学特性及本构模型研究[J]. 岩土力学, 2020, 41(S1): 19-29.
[2] 刘泉声, 王栋, 朱元广, 杨战标, 伯音, . 支持向量回归算法在地应力场反演中的应用[J]. 岩土力学, 2020, 41(S1): 319-328.
[3] 赵怡晴, 吴常贵, 金爱兵, 孙浩, . 热处理砂岩微观结构及力学性质试验研究[J]. 岩土力学, 2020, 41(7): 2233-2240.
[4] 侯公羽, 荆浩勇, 梁金平, 谭金鑫, 张永康, 杨希, 谢鑫, . 不同荷载下矩形巷道围岩变形及声发射 特性试验研究[J]. 岩土力学, 2020, 41(6): 1818-1828.
[5] 张善凯, 冷先伦, 盛谦, . 卢氏膨胀岩湿胀软化特性研究[J]. 岩土力学, 2020, 41(2): 561-570.
[6] 王川婴, 王益腾, 韩增强, 汪进超, 邹先坚, 胡胜, . 基于钻孔形态分析的地应力测量方法研究[J]. 岩土力学, 2019, 40(S1): 549-556.
[7] 韩钢, 周辉, 陈建林, 张传庆, 高阳, 宋桂红, 洪望兵, . 白鹤滩水电站层间错动带工程地质特性[J]. 岩土力学, 2019, 40(9): 3559-3568.
[8] 陈卫忠, 田 云, 王学海, 田洪铭, 曹怀轩, 谢华东, . 基于修正[BQ]值的软岩隧道挤压变形预测[J]. 岩土力学, 2019, 40(8): 3125-3134.
[9] 朱才辉, 崔 晨, 兰开江, 东永强. 砖-土结构劣化及入侵建筑物拆除 对榆林卫城稳定性影响[J]. 岩土力学, 2019, 40(8): 3153-3166.
[10] 邓 珂, 陈 明, 卢文波, 严 鹏, 冷振东, . 地应力对坝肩槽预裂爆破成缝的影响研究[J]. 岩土力学, 2019, 40(3): 1121-1128.
[11] 肖晓春, 樊玉峰, 吴迪, 丁鑫, 王磊, 赵宝友, . 组合煤岩破坏过程能量耗散特征及冲击危险评价[J]. 岩土力学, 2019, 40(11): 4203-4212.
[12] 崔光耀, 祁家所, 王明胜, . 片理化玄武岩隧道围岩大变形控制现场试验研究[J]. 岩土力学, 2018, 39(S2): 231-237.
[13] 颜天佑,崔 臻,张勇慧,张传健,盛 谦,李建贺,. 跨活动断裂隧洞工程赋存区域地应力场分布特征研究[J]. , 2018, 39(S1): 378-386.
[14] 杨 昊,张晋勋,单仁亮,武福美,郭志明,. 冻结饱水单裂隙岩体力学特性试验研究[J]. , 2018, 39(4): 1245-1255.
[15] 王庆武,巨能攀,杜玲丽,黄 健,胡 勇,. 拉林铁路桑日至加查段三维地应力场反演分析[J]. , 2018, 39(4): 1450-1462.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!