岩土力学 ›› 2023, Vol. 44 ›› Issue (7): 2064-2072.doi: 10.16285/j.rsm.2022.1159

• 岩土工程研究 • 上一篇    下一篇

隧道地表高压旋喷加固的浆液渗透范围计算方法

徐华1, 2,张瑜2,郭国和3,蔡敏3,李奕信4,陈壮2   

  1. 1. 成都理工大学 地质灾害防治与地质环境保护国家重点实验室,四川 成都 610059;2. 西南交通大学 土木工程学院,四川 成都 610031; 3. 广东云茂高速公路有限公司,广东 广州 510623;4. 中铁十一局集团第五工程有限公司,重庆 400030
  • 收稿日期:2022-07-26 接受日期:2022-09-04 出版日期:2023-07-17 发布日期:2023-07-16
  • 作者简介:徐华,男,1979年生,博士,教授,主要从事隧道与岩土工程方面研究。
  • 基金资助:
    交通运输部重点科技项目(No.2019-MS1-017)

Method for calculating penetration range of grouting slurry in the reinforced tunnel by high-pressure rotary jet grouting from ground

XU Hua1, 2, ZHANG Yu2, GUO Guo-he3, CAI Min3, LI Yi-xin4, CHEN Zhuang2   

  1. 1. State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, Sichuan 610059, China; 2. School of Civil Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China; 3. Guangdong Yun Mao Expressway Co. Ltd, Guangzhou, Guangdong 510623, China; 4. The 5th Engineer Co. Ltd. of China Railway 11th Bureau Group, Chongqin 400030, China
  • Received:2022-07-26 Accepted:2022-09-04 Online:2023-07-17 Published:2023-07-16
  • Supported by:
    This work was supported by the Innovative Key Program of Ministry of Transport of China (2019-MS1-017).

摘要: 由于隧道浅埋段软弱围岩地表高压旋喷加固后具有整体性好、强度高及渗透性低等优点,已被逐渐应用于实际工程,但高压旋喷浆液的渗透范围受到孔隙率、渗透路径及施工参数的影响难以确定。通过考虑岩土体性质、浆液流体力学特性及渗透路径等因素影响,基于圆孔扩张理论,建立浆液渗透范围的平面分析模型,推导出高压旋喷浆液的径向渗透范围计算公式,分析其适用范围及参数取值方法;结合现场开挖验证理论计算公式的可靠性,探讨影响浆液渗透范围的主控因素。研究表明:理论计算与现场实测的浆液渗透径向范围分别为成桩半径的0.630倍、0.618倍,两者相差仅2%,能较好地体现隧道浅埋段软弱围岩特性及各施工参数的影响;随岩土体孔隙率、浆液水灰比、旋喷压力的增大以及迂曲度的减小,浆液渗透范围呈增大的变化规律。该方法可为隧道软弱围岩地表高压旋喷加固的桩间距及桩径设计、加固效果评价等提供理论参考。

关键词: 隧道浅埋段, 高压旋喷, 圆孔扩张理论, 浆液渗透范围

Abstract: Due to the advantages of good integrity, high strength and low permeability, surrounding rock reinforced by high-pressure rotary jet grouting in shallow buried section of tunnels has been gradually applied to practical engineering. However, the slurry penetration process is closely related to porosity, penetration path and construction parameters, thus it is difficult to determine the slurry penetration range. Through considering the properties of rock and soil, the hydrodynamic characteristics of grouting slurry and penetration path, a plane analysis model of slurry penetration range was established based on cavity expansion theory, and the calculation formula of radial penetration range of high-pressure rotary jet grouting was derived. Its application scope and parameter determination were also analyzed. Comparing with the field excavation, rationality of the theoretical formula was verified. Furthermore, the primary factors affecting the penetration range of slurry were discussed. The results show that the radial range of slurry permeation from theoretical formula and field measurement is 0.63 times and 0.618 times of pile radius, respectively, and the deviation of between theoretical permeation range and measured one is only 2%, which indicates that the proposed formula can well reflect the property of surrounding rock at shallow buried section of tunnels and the effect of construction parameters. The penetration filling range of high-pressure slurry increases with the increase of porosity, slurry water-cement ratio, rotary jet pressure and the decrease of tortuosity. The proposed method can provide theoretical basis for designing pile spacing and pile diameter, and for the evaluation of reinforcement effect on shallow buried section of tunnels using high-pressure rotary jet grouting.

Key words: shallow buried tunnel, high-pressure jet grouting piles, cavity expansion theory, penetration range of grouting slurry

中图分类号: 

  • U451
[1] 李镜培, 刘耕云, 周攀, . 基于相似性原理超固结土不排水扩张半解析解[J]. 岩土力学, 2022, 43(3): 582-590.
[2] 周建武 ,楼晓明. 软黏土中预钻孔沉桩引起的土体隆起分析[J]. , 2011, 32(9): 2839-2844.
[3] 宋勇军,胡 伟,王德胜,周军林. 基于修正剑桥模型的挤密桩挤土效应分析[J]. , 2011, 32(3): 811-814.
[4] 任连伟,刘汉龙,张华东,郑 浩. 高喷插芯组合桩承载力计算及影响因素分析[J]. , 2010, 31(7): 2219-2225.
[5] 郑 刚,裴颖洁. 天津地铁既有线改造工程中的控制差异沉降研究[J]. , 2007, 28(4): 728-732.
[6] 赵 瑜 ,王铁成 ,朱永庚 ,王曙光,. 水库围堤地基液化段抗震加固效果的数值分析[J]. , 2006, 27(S2): 719-722.
[7] 沈水龙,唐翠萍,庞晓明. 不同水泥土混合桩周围土体的扰动与强度恢复[J]. , 2006, 27(10): 1827-1830.
[8] 黄炳仁. 复合土拱新技术及其在城市地下工程中的应用[J]. , 2004, 25(2): 279-282.
[9] 赖国伟,黄 斌,常晓林. 深厚覆盖层高压旋喷凝结体的宏观力学参数研究[J]. , 2003, 24(1): 35-39.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .