岩土力学 ›› 2024, Vol. 45 ›› Issue (2): 633-646.doi: 10.16285/j.rsm.2023.0238

• 测试技术 • 上一篇    

多频雷达融合的顶煤结构精准探测技术

刘万里1,王诚龙1,王浩宇1,张学亮2   

  1. 1. 中国矿业大学 机电工程学院,江苏 徐州 221116;2. 煤炭工业规划设计研究院有限公司,北京 100120
  • 收稿日期:2023-02-27 接受日期:2023-04-17 出版日期:2024-02-11 发布日期:2024-02-07
  • 通讯作者: 王诚龙,男,1997年生,硕士研究生,主要从事工作面异常体勘探方面的研究。E-mail: 1667026999@qq.com
  • 作者简介:刘万里,男,1979年生,博士,副教授,主要从事煤层结构探测方面的研究。4830@cumt.edu.cn
  • 基金资助:
    工信部产业基础再造和制造业高质量发展专项(No.TC220A04W-1-167Z);国家自然科学基金(No. 52274161,No. 51974160)。

Accurate detection technology of top coal structure using multi-frequency radar fusion

LIU Wan-li1, WANG Cheng-long1, WANG Hao-yu1, ZHANG Xue-liang2   

  1. 1. School of Mechanical and Electrical Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China; 2. China Coal Technology & Engineering Group Coal Industry Planning Institute, Beijing 100120, China
  • Received:2023-02-27 Accepted:2023-04-17 Online:2024-02-11 Published:2024-02-07
  • Supported by:
    This work was supported by the Industry and Information Technology Development Program of Foundation Reconstruction and Manufacturing Industry High-quality Development of China (TC220A04W-1-167Z) and the National Natural Science Foundation of China (52274161, 51974160).

摘要: 顶煤结构的准确探测是实现综放智能化开采的重要依据,然而我国煤层结构复杂且内部常含多层夹矸,易影响综放智能化开采的水平。为此,提出一种多频雷达融合的顶煤结构精准探测方法,可提高雷达天线探测深度内的浅部探测精度,同时对顶煤内部的结构信息进行解释。主要研究步骤如下:首先,对不同频率的雷达数据进行预处理和空间对齐,建立不同频率雷达数据之间的空间对应关系;其次,利用滑动窗口与小波变换加权融合方法对多频率雷达数据进行处理,根据窗口内各分段小波信号的能量占比确定各频率信号的时变权重值,并引入边缘检测算法来提高小波变换对雷达数据的融合效率,实现多频雷达数据有效融合;最后,根据煤-矸-岩的介电常数差异和电磁波传播的衰减特性,建立顶煤内部回波强度模型,并利用分层识别方法计算出顶煤内部煤-矸-岩之间的界面信息,进而反演出顶煤内部结构(包括顶煤厚度、夹矸厚度及层数、夹矸层间距等)。试验结果表明:所提出的方法能有效地将不同频率雷达数据进行融合,并能有效地探测出顶煤内部结构特征,且顶煤厚度、夹矸厚度和夹矸层间距的探测误差均小于10%。该方法有助于实现顶煤结构的精准探测,为综放智能化开采提供理论技术支撑。

关键词: 综放开采, 多频雷达融合, 顶煤结构, 探测

Abstract: Accurately detecting the structure of top coal is crucial for achieving intelligent fully-mechanized caving mining. However, the complex structure of coal seams in China, often consisting of multiple layers of separated gangue, can significantly impact the effectiveness of fully-mechanized caving mining. To address this challenge, this paper proposes a precise detection method for top coal structure based on multi-frequency radar fusion. This method aims to improve the detection accuracy of the shallow part within the radar antenna’s detection depth and interpret the structural information inside the top coal. The main research steps are as follows: Firstly, preprocessing and spatial alignment of radar data of different frequencies are carried out to establish the spatial correspondence between radar data of different frequencies. Secondly, a sliding window and wavelet transform weighted fusion method is employed to process the multi-frequency radar data. The time-varying weight value of each frequency signal is determined based on the energy proportion of each segment wavelet signal in the window. Additionally, an edge detection algorithm is introduced to enhance the fusion efficiency of the wavelet transform to the radar data, thereby achieving effective fusion of the multi-frequency radar data. Finally, taking into account the differences in dielectric constants between coal, gangue, and rock, as well as the attenuation characteristics of electromagnetic wave propagation, an internal echo intensity model of top coal is established. The interface information between coal, gangue, and rock inside the top coal is calculated using a stratified identification method, enabling the inverse interpretation of the internal structure of top coal, including the thickness of top coal, the thickness and number of gangue layers, and the spacing between gangue layers. The test results demonstrate that the proposed method can effectively integrate radar data of different frequencies and accurately detect the internal structural characteristics of top coal. Moreover, the detection errors of the thickness of top coal, the thickness of gangue, and the spacing between gangue layers are all less than 10%. This method enables the accurate detection of top coal structure, providing theoretical and technical support for the intelligent fully-mechanized caving mining.

Key words: fully-mechanized caving mining, multi-frequency radar fusion, top coal structure, detection

中图分类号: 

  • TP 628
[1] 王诚龙, 刘万里, 张学亮, 马修泽, 徐健斌, 李港, . 基于探地雷达的工作面异常体精准探测技术[J]. 岩土力学, 2022, 43(11): 3198-3208.
[2] 房昱纬, 吴振君, 盛谦, 汤华, 梁栋才, . 基于超前钻探测试的隧道地层智能识别方法[J]. 岩土力学, 2020, 41(7): 2494-2503.
[3] 汪进超, 王川婴, 唐新建, 韩增强, 王益腾, 胡胜. 基于多频钻孔声呐的溶洞探测方法研究[J]. 岩土力学, 2020, 41(1): 353-361.
[4] 李兆焱, 袁晓铭, 孙锐. 液化判别临界曲线的变化模式与一般规律[J]. 岩土力学, 2019, 40(9): 3603-3609.
[5] 王 琦, 孙会彬, 江 贝, 高 松, 李术才, 高红科, . 基于数字钻探和支持向量机预测岩体 单轴抗压强度的方法[J]. 岩土力学, 2019, 40(3): 1221-1228.
[6] 夏加国,高 玮,程雅星,胡瑞林,徐佩芬,隋皓月, . 土石混合体斜坡地质结构精细探测新途径及其应用[J]. , 2018, 39(8): 3087-3094.
[7] 黄 锋,朱合华,李秋实,李恩璞,. 隧道围岩松动圈的现场测试与理论分析[J]. , 2016, 37(S1): 145-150.
[8] 罗彩红,邢 健,郭 蕾,秦尚林,. 基于井间电磁CT探测的岩溶空间分布特征[J]. , 2016, 37(S1): 669-673.
[9] 杨登峰,张凌凡,柴 茂,李 博,白翼飞,. 基于断裂力学的特厚煤层综放开采顶板破断规律研究[J]. , 2016, 37(7): 2033-2039.
[10] 常聚才,谢广祥,张学会. 特厚煤层大采高综放工作面煤壁片帮机制分析[J]. , 2015, 36(3): 803-808.
[11] 徐 坤,王志杰,孟祥磊,孙长升. 深埋隧道围岩松动圈探测技术研究与数值模拟分析[J]. , 2013, 34(S2): 464-470.
[12] 郝亚飞 ,李海波1,郭学彬 ,张继春 ,夏 祥 ,莫振泽. 含软弱夹层岩体边坡爆破层裂特性及稳定性研究[J]. , 2012, 33(4): 1178-1184.
[13] 宋卫东 ,付建新 ,杜建华 ,张朝雷 . 基于精密探测的金属矿山采空区群稳定性分析[J]. , 2012, 33(12): 3781-3787.
[14] 刘 贵 ,刘治国 ,张华兴 ,尹润生. 泾河下综放开采隔离煤柱对覆岩破坏控制作用的物理模拟[J]. , 2011, 32(S1): 433-0437.
[15] 舒志乐 ,刘新荣 ,朱成红 ,郭子红 ,李晓红. 隧道衬砌空洞探地雷达三维探测模型试验研究[J]. , 2011, 32(S1): 551-0558.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[2] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[3] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .
[4] 胡 伟,黄 义,刘增荣. 循环荷载下饱和黄土不排水强度退化规律试验与理论研究[J]. , 2009, 30(10): 2996 -3000 .
[5] 张明义,刘俊伟,于秀霞. 饱和软黏土地基静压管桩承载力时间效应试验研究[J]. , 2009, 30(10): 3005 -3008 .
[6] 郭军辉,程卫国,张 滨. 土工格栅低温下蠕变特性试验研究[J]. , 2009, 30(10): 3009 -3012 .
[7] 吴 琼,唐辉明,王亮清,林志红. 库水位升降联合降雨作用下库岸边坡中的浸润线研究[J]. , 2009, 30(10): 3025 -3031 .
[8] 姜领发,陈善雄,于忠久. 饱和土中任意形状衬砌对稳态压缩波的散射[J]. , 2009, 30(10): 3063 -3070 .
[9] 吴 亮,钟冬望,卢文波. 空气间隔装药爆炸冲击荷载作用下混凝土损伤分析[J]. , 2009, 30(10): 3109 -3114 .
[10] 赵明华,刘小平,黄立葵. 降雨作用下路基裂隙渗流分析[J]. , 2009, 30(10): 3122 -3126 .