›› 2015, Vol. 36 ›› Issue (1): 1-8.doi: 10.16285/j.rsm.2015.01.001

• Fundamental Theroy and Experimental Research •     Next Articles

Feature evolution of dominant frequency components in acoustic emissions of instantaneous strain-type granitic rockburst simulation tests

HE Man-chao1, 2,ZHAO Fei1, 2,ZHANG Yu2, 3,DU Shuai1, 2,GUAN Lei1, 2   

  1. 1. School of Mechanics and Civil Engineering, China University of Mining and Technology, Beijing 100083, China; 2. State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Beijing 100083, China; 3. Department of Computer Teaching and Network Information, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
  • Received:2014-04-09 Online:2015-01-12 Published:2018-06-13

Abstract: This paper presents the experimental study of instantaneous strain-type granitic rockbursts. It uses the nondestructive acoustic emission (AE) testing method to monitor the rock internal damage during the simulation test. Using real-time waveform signals, we can plot the evolution of stresses and voltage signals in full time-domain. Combining with the cumulative AE energy curve, we can determine five key points which are the first inflection point A (positioned at initial load), the two turning points B and C (located at obvious rise ledges), the dramatic increasing point D and the final peak point E. The five points can be extracted and processed with the Fast Fourier Transform (FFT) in Matlab commercial software. The results indicate that the dominant frequency component of the granitic rock sample is 106 kHz at the initial loading stage. As the load increases, the frequency changes from low value to high value, the band of frequency becomes wider and wider, and the shape of wave changes from unimodal to multimodal. These frequency changes indicate the complicated frequency components and various fracture modes. At the time of rockburst occurring, the band of frequency becomes narrower and the shape of wave changes back to unimodal. The dominant frequency decreases to 106 kHz and equals to the initial value, which indicates a large amount of energy is released.

Key words: instantaneous rockburst test, acoustic emission, major frequency, fast Fourier transform, signal feature

CLC Number: 

  • TU 452
[1] ZHANG Yan-bo, SUN Lin, YAO Xu-long, LIANG Peng, TIAN Bao-zhu, LIU Xiang-xin, . Experimental study of time-frequency characteristics of acoustic emission key signals during granite fracture [J]. Rock and Soil Mechanics, 2020, 41(1): 157-165.
[2] ZHENG Kun, MENG Qing-shan, WANG Ren, YU Ke-fu, . Experimental study of acoustic emission characteristics of coral skeleton limestone under triaxial compression [J]. Rock and Soil Mechanics, 2020, 41(1): 205-213.
[3] LOU Ye, ZHANG Guang-qing. Experimental analysis of fracturing fluid viscosity on cyclic hydraulic fracturing [J]. Rock and Soil Mechanics, 2019, 40(S1): 109-118.
[4] LIU Xi-ling, LIU Zhou, LI Xi-bing, HAN Meng-si. Acoustic emission b-values of limestone under uniaxial compression and Brazilian splitting loads [J]. Rock and Soil Mechanics, 2019, 40(S1): 267-274.
[5] YANG Dao-xue, ZHAO Kui, ZENG Peng, ZHUO Yu-long, . Numerical simulation of unknown wave velocity acoustic emission localization based on particle swarm optimization algorithm [J]. Rock and Soil Mechanics, 2019, 40(S1): 494-502.
[6] ZHANG Guo-kai, LI Hai-bo, WANG Ming-yang, LI Xiao-feng, . Crack propagation characteristics in rocks containing single fissure based on acoustic testing and camera technique [J]. Rock and Soil Mechanics, 2019, 40(S1): 63-72.
[7] HOU Gong-yu, JING Hao-yong, LIANG Jin-ping, ZHANG Guang-dong, TAN Jin-xin, ZHANG Yong-kang, YANG Xi, . Experimental study of deformation and acoustic emission characteristics of rectangular roadway under different unloading rates [J]. Rock and Soil Mechanics, 2019, 40(9): 3309-3318.
[8] SONG Yi-min, DENG Lin-lin, LÜ Xiang-feng, XU Hai-liang, ZHAO Ze-xin, . Study of acoustic emission characteristics and deformation evolution during rock frictional sliding [J]. Rock and Soil Mechanics, 2019, 40(8): 2899-2906.
[9] CHENG Ai-ping, ZHANG Yu-shan, DAI Shun-yi, DONG Fu-song, ZENG Wen-xu, LI Dan-feng, . Space-time evolution of acoustic emission parameters of cemented backfill and its fracture prediction under uniaxial compression [J]. Rock and Soil Mechanics, 2019, 40(8): 2965-2974.
[10] ZHANG Chuan-qing, LIU Zhen-jiang, ZHANG Chun-sheng, ZHOU Hui, GAO Yang, HOU Jing, . Experimental study on rupture evolution and failure characteristics of aphanitic basalt [J]. Rock and Soil Mechanics, 2019, 40(7): 2487-2496.
[11] WU Jin-wen, FENG Zi-jun, LIANG Dong, BAO Xian-kai, . Characteristics of granite failure by injecting high-temperature-vapour under uniaxial stress [J]. Rock and Soil Mechanics, 2019, 40(7): 2637-2644.
[12] CHEN Guo-qing, TANG Peng, LI Guang-ming, ZHANG Guang-ze, WANG Dong, . Analysis of acoustic emission frequency spectrum characteristics and main fracture precursor of rock bridge in direct shear test [J]. Rock and Soil Mechanics, 2019, 40(5): 1649-1656.
[13] SU Guo-shao, YAN Si-zhou, YAN Zhao-fu, ZHAI Shao-bin, YAN Liu-bin, . Evolution characteristics of acoustic emission in rockburst process under true-triaxial loading conditions [J]. Rock and Soil Mechanics, 2019, 40(5): 1673-1682.
[14] GAO Qing-peng, CAO Ping, WANG Fei, WANG Zhu. Mechanical properties and failure criteria of multi-joint rock-like specimens under compression-shear [J]. Rock and Soil Mechanics, 2019, 40(3): 1013-1022.
[15] JIANG De-yi, ZHANG Shui-lin, CHEN Jie, YANG Tao, WANG Xiao-shu, XIE Kai-nan, JIANG Xiang, . Low filed NMR and acoustic emission probability density study of freezing and thawing cycles damage for sandstone [J]. Rock and Soil Mechanics, 2019, 40(2): 436-444.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] TAN Xian-jun, CHEN Wei-zhong, YANG Jian-ping, YANG Chun-he. Study of THM-damage coupling model of gas storage in salt rock with interlayer[J]. , 2009, 30(12): 3633 -3641 .
[2] WEI Xing,WANG Gang,YU Zhi-ling. FEM of traffic-load-induced settlement of road on soft clay[J]. , 2010, 31(6): 2011 -2015 .
[3] WEN Shi-yi, LI Jing , SU Xia , YAO Xiong. Studies of mesomechanical structure characters of surrounding rock failure under complex stress state[J]. , 2010, 31(8): 2399 -2406 .
[4] MAO Ning,ZHANG Yao-liang. Typical examples of simple methods to find empirical formulas[J]. , 2010, 31(9): 2978 -2982 .
[5] LIU Jie,LI Jian-lin,QU Jian-jun,Cheng Xing,LI Jian-wu,LUO Shi-wei. Multiple factors analysis of influence of developing horizontal displacement at Dagangshan dam abutment slope based on unloading rock mass mechanics[J]. , 2010, 31(11): 3619 -3626 .
[6] LI Wei-hua, ZHAO Cheng-gang, DU Nan-xin. Analysis of effects of saturated soft interlayer on seismic responses of metro station[J]. , 2010, 31(12): 3958 -3963 .
[7] HAN Xian-min. Study of construction technology and mechanical effect of Guanjiao tunnel in shallow-buried sandy stratum in Xining-Golmud 2nd line[J]. , 2010, 31(S2): 297 -302 .
[8] LIU Yong-hai, ZHU Xiang-rong, CHANG Lin-yue. Determining preconsolidation pressure by mathematic analysis based on casagrande method[J]. , 2009, 30(1): 211 -214 .
[9] ZHU Lei, HONG Bao-ning. Physico-mechanical characteristics of powdered soil of coal measure strata[J]. , 2009, 30(5): 1317 -1322 .
[10] ZHOU Chun-mei, ZHANG Ze-jun, XU Da-jie, WANG Sheng-wei, LI Xian-fu. Research on numerical simulation of paleo-tectonic stress fields and hazard prediction[J]. , 2009, 30(7): 2141 -2146 .