›› 2015, Vol. 36 ›› Issue (2): 333-339.doi: 10.16285/j.rsm.2015.02.005

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Analysis of influencing factors of salt rock’s shear characteristics in brine soak environment

JIANG De-yi1, ZHANG Jun-wei1, CHEN Jie1, REN Song1, YANG Chun-he1, 2   

  1. 1.State Key Laboratory for the Coal Mine Disaster Dynamics and Controls, Chongqing University, Chongqing 400044, China; 2. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
  • Received:2013-10-16 Online:2015-02-11 Published:2018-06-13

Abstract: In order to investigate the shear characteristics of salt rock in brine soak environment during the process of salt cavern building, an orthogonal experiment is designed to investigate the influences of brine soak time, temperature and loading rate on the shear properties of salt rock. The experimental results show that: brine soak weakens the shear strength of salt rock, and the longer the brine soak time is, the lower the shear strength of salt rock is, but the shear strength will be stabilized eventually; the increasing of brine temperature exacerbates internal damage of salt rock, which decreases shear strength; the shear strength of salt rock, soaked in a certain temperature brine, decreases with the increasing of loading rate. And the ductile characteristics of salt rock are gradually weakened with the increasing of soak time, temperature and loading rate. The binary linear regression is respectively conducted by any two factors, the relative importance ratio is used to build judgment matrix according to the standardized regression coefficients for salt rock’ shear strength, and weights of various factors are calculated by analytic hierarchy process. The weights of temperature, loading rate and soak time respectively are 0.397, 0.340, and 0.263. The results of range analysis and weights calculation show that the primary factor affecting the shear strength of rock salt is temperature, and the secondary factor is loading rate, followed by the soaking time.

Key words: salt rock, brine soak, shear characteristics, orthogonal experiment, analytic hierarchy process

CLC Number: 

  • TU 45
[1] FU Hong-yuan, LIU Jie, ZENG Ling, BIAN Han-bing, SHI Zhen-ning, . Deformation and strength tests of pre-disintegrating carbonaceous mudstone under loading and soaking condition [J]. Rock and Soil Mechanics, 2019, 40(4): 1273-1280.
[2] JIANG De-yi, LI Xiao-kang, CHEN Jie, LI Xiao-jun, LIU Wei, KANG Yan-fei, . Model test and numerical calculation of double-well flow field in layered salt rock [J]. Rock and Soil Mechanics, 2019, 40(1): 165-172.
[3] ZENG Yin, LIU Jian-feng, ZHOU Zhi-wei, WU Chi, LI Zhi-cheng, . Creep acoustic emission and damage evolution of salt rock under uniaxial compression [J]. Rock and Soil Mechanics, 2019, 40(1): 207-215.
[4] CHEN Feng, ZHANG Qing-qing, YAO Wei, YE Liang-liang, . Dilation behavior and dilation angle model of salt rock with mudstone [J]. Rock and Soil Mechanics, 2018, 39(S2): 195-201.
[5] XIANG Gao, LIU Jian-feng, LI Tian-yi, XU-YANG Meng-di, DENG Chao-fu, WU Chi,. Study of fractal and damage characteristic in the deformation and failure process of salt rack based on acoustic emission [J]. , 2018, 39(8): 2905-2912.
[6] HU Wei-zhe, XIE Ling-zhi, CEN Wang-lai, YING Shi, LUO Yun-chuan, ZHAO Peng,. Mechanical characteristics of salt rock based on mesoscopic tests and discrete element method [J]. , 2018, 39(6): 2073-2081.
[7] MA Xu-qiang, SHI Xi-lin, YIN Hong-wu, YANG Chun-he, LI Yin-ping, MA Hong-ling,. Failure mechanisms of salt rock with an interlayer under triaxial compression [J]. , 2018, 39(2): 644-650.
[8] WANG Peng, SHU Cai, SHI Feng, HU Guo-zhong, WANG Hong-tu,. Orthogonal experimental study of similar materials properties of different densities, sand-binder ratios and residual moisture contents [J]. , 2017, 38(S2): 229-235.
[9] XU Yang-meng-di, LIU Jian-feng, XU Hui-ning, ZOU Hang, HU Chang-sheng, LI Jia-wei,. Experimental study of permeability of salt rock with impurities in whole process of loading [J]. , 2017, 38(S1): 402-408.
[10] LI Yin-ping , KONG Qing-cong ,SHI Xi-lin, LI Shuo, YANG Bo-jin, YANG Chun-he,. Viscoelastic model of surface subsidence of salt cavern storage and its application [J]. , 2017, 38(7): 2049-2058.
[11] JIANG De-yi, CUI Yao, FAN Jin-yang, CHEN Jie, REN Song,. Experimental study of mechanical characteristics of salt rock under discontinuous cyclic loading [J]. , 2017, 38(5): 1327-1334.
[12] ZHANG Jun-wei, JIANG De-yi, CHEN Jie, ZHAO Yun-feng, CHENG Yan-fei,. Effect of brine flux on damage and dissolving characteristics of rock salt under the condition of complex stress unloading [J]. , 2017, 38(3): 640-648.
[13] HAO Tie-sheng, GENG Yi-de, CHEN Yue-du,. Experimental investigation on mechanical behaviours of salt rock containing brittle-hard interlayers [J]. , 2017, 38(11): 3119-3126.
[14] MA Lin. Experimental study of shear characteristics of calcareous gravelly soil [J]. , 2016, 37(S1): 309-316.
[15] CHEN Jie , LIU Jian-xing , JIANG De-yi , FAN Jin-yang , REN Song,. An experimental study of strain and damage recovery of salt rock under confining pressures [J]. , 2016, 37(1): 105-112.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Gang, LI Shu-cai, WANG Ming-bin. Study of stability of anchoring jointed rockmass under seepage pressure[J]. , 2009, 30(9): 2843 -2849 .
[2] LIU Yu-cheng,CAO Shu-gang,LIU Yan-bao. Discussion on some time functions for describing dynamic course of surface subsidence due to mining[J]. , 2010, 31(3): 925 -931 .
[3] LIU En-long. Breakage mechanics for geomaterials: Breakage mechanism of structural blocks and binary-medium model[J]. , 2010, 31(S1): 13 -22 .
[4] JIE Yu-xin, YANG Guang-hua. Modification of elastoplastic models based on generalized potential theory[J]. , 2010, 31(S2): 38 -42 .
[5] YANG Jian-min, ZHENG Gang. Classification of seepage failures and opinion to formula for check bursting instability in dewatering[J]. , 2009, 30(1): 261 -264 .
[6] ZHOU Hua,WANG Guo-jin1,,FU Shao-jun,ZOU Li-chun,CHEN Sheng-hong. Finite element analysis of foundation unloading and relaxation effects of Xiaowan Arch Dam[J]. , 2009, 30(4): 1175 -1180 .
[7] YE Fei, ZHU He-hua, HE Chuan. Back-filled grouts diffusion model and its pressure to segments of shield tunnel[J]. , 2009, 30(5): 1307 -1312 .
[8] CHEN Lin, ZHANG Yong-xing, RAN Ke-xin. A method for calculating active earth pressure considering shear stress[J]. , 2009, 30(S2): 219 -223 .
[9] LUO Qiang , WANG Zhong-tao , LUAN Mao-tian , YANG Yun-ming , CHEN Pei-zhen. Factors analysis of non-coaxial constitutive model’s application to numerical analysis of foundation bearing capacity[J]. , 2011, 32(S1): 732 -0737 .
[10] GONG Wei-ming, HUANG Ting, DAI Guo-liang. Experimental study of key parameters of high piled foundation for offshore wind turbine[J]. , 2011, 32(S2): 115 -121 .