›› 2015, Vol. 36 ›› Issue (2): 463-469.doi: 10.16285/j.rsm.2015.02.023

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Experimental research on mechanical properties and microstructure change law of red sandstone after different temperatures

RONG Hu-ren1, BAI Hai-bo1, WANG Zhan-sheng2   

  1. 1. State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221008, China; 2. Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
  • Received:2013-12-24 Online:2015-02-11 Published:2018-06-13

Abstract: Researches are carried out on the mechanical properties of red sandstones treated at 20 °C, 70 °C, 140 °C、200 °C, 300 °C, 400 °C, 600 °C and 800 °C, respectively. Based on the researches, the regular patterns of the pore structure and micro fracture of the heated red sandstones are investigated combined with mercury and scanning electron microscope analyses. It is concluded that: (1) the maximum uniaxial compressive strength of heated red sandstones at 300 °C is 1.4 times as much as that of red sandstones at room temperature. The uniaxial compressive strength decreases by 32.5% when red stones are heated to 600 °C. (2) The crack widths of heated red sandstones are mainly ranged from 0 to 0.01 μm, during which there are better correlation between the distribution ratio of cracks and the uniaxial compressive strength. (3) The main affecting factors of the deterioration of red sandstones are the transgranular cracks and heterogeneity of cracks.

Key words: red sandstone, distribution of cracks, degradation, pore structure

CLC Number: 

  • TU 45
[1] XIAO Yao, DENG Hua-feng, LI Jian-lin, ZHI Yong-yan, XIONG Yu. The deterioration effect of fractured rock mass strengthened by grouting method under long-term immersion [J]. Rock and Soil Mechanics, 2019, 40(S1): 143-151.
[2] LIU Bo, MA Yong-jun, SHENG Hai-long, CHANG Ya-ru, YU Jun-jie, JIA Shuai-long, . Experiments on mechanical properties of Cretaceous red sandstone after freeze-thaw process [J]. Rock and Soil Mechanics, 2019, 40(S1): 161-171.
[3] DENG Hua-feng, ZHI Yong-yan, DUAN Ling-ling, PAN Deng, LI Jian-lin. Mechanical properties of sandstone and damage evolution of microstructure under water-rock interaction [J]. Rock and Soil Mechanics, 2019, 40(9): 3447-3456.
[4] LI Ling, LIU Jin-quan, LIU Zao-bao, LIU Tao-gen, WANG Wei, SHAO Jian-fu, . Experimental investigations on compaction properties of sand-clay mixture at high pressure [J]. Rock and Soil Mechanics, 2019, 40(9): 3502-3514.
[5] LI Jie-lin, ZHU Long-yin, ZHOU Ke-ping, LIU Han-wen, CAO Shan-peng, . Damage characteristics of sandstone pore structure under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2019, 40(9): 3524-3532.
[6] LI Chen, WU Wen-bing, MEI Guo-xiong, ZONG Meng-fan, LIANG Rong-zhu, . Analytical solution for 1D degradation-consolidation of municipal solid waste under different drainage conditions [J]. Rock and Soil Mechanics, 2019, 40(8): 3071-3080.
[7] LIU Yu, ZHANG Wei, LIANG Xiao-long, XU Lin, TANG Xin-yu. Determination on representative element volume of Nanjing silty-fine sand for its spatial pore structure [J]. Rock and Soil Mechanics, 2019, 40(7): 2723-2729.
[8] WANG Shi-quan, WEI Ming-li, HE Xing-xing, ZHANG Ting-ting, XUE Qiang, . Study of water transfer mechanism during sediment solidification process based on nuclear magnetic resonance technology [J]. Rock and Soil Mechanics, 2019, 40(5): 1778-1786.
[9] YU Jin, ZHANG Xin, CAI Yan-yan, LIU Shi-yu, TU Bing-xiong, FU Guo-feng, . Meso-damage and mechanical properties degradation of sandstone under combined effect of water chemical corrosion and freeze-thaw cycles [J]. Rock and Soil Mechanics, 2019, 40(2): 455-464.
[10] ZHENG Guang-hui, XU Jin-yu, WANG Peng, FANG Xin-yu, WANG Pei-xi, WEN Ming, . Physical characteristics and degradation model of stratified sandstone under freeze-thaw cycling [J]. Rock and Soil Mechanics, 2019, 40(2): 632-641.
[11] DING Yu, CHEN Xiao-bin, ZHANG Jia-sheng, JIA Yu, . Experimental study of dynamic water pressure in transient saturated zone of red sandstone residual soil subgrade [J]. Rock and Soil Mechanics, 2019, 40(12): 4740-4750.
[12] LI Jing, KONG Xiang-chao, SONG Ming-shui, WANG Yong, WANG Hao, LIU Xu-liang, . Study on the influence of reservoir rock micro-pore structure on rock mechanical properties and crack propagation [J]. Rock and Soil Mechanics, 2019, 40(11): 4149-4156.
[13] ZHANG Chun-xiao, XIAO Hong-bin, BAO Jia-miao, YIN Ya-hu, YIN Duo-lin. Stress relaxation model of expansive soils based on fractional calculus [J]. , 2018, 39(5): 1747-1752.
[14] CHEN Bin, ZHOU Le-yi, ZHAO Yan-lin, WANG Zhi-chao, CHAO Dai-jie, JIA Gu-ning,. Relationship between microstructure and shear strength of weak interlayer of red sandstone under dry and wet cycles [J]. , 2018, 39(5): 1633-1642.
[15] YE Jia-bing, ZHANG Jia-fa, ZOU Wei-lie, . Influences of grain shape on pore characteristics of filled breakstone aggregate [J]. Rock and Soil Mechanics, 2018, 39(12): 4457-4467.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .
[2] ZHANG Wen-jie,CHEN Yum-min. Pumping tests and leachate drawdown design in a municipal solid waste landfill[J]. , 2010, 31(1): 211 -215 .
[3] GONG Wei-li, AN Li-qian, ZHAO Hai-yan, MAO Ling-tao. Multiple scale characterization of CT image for coal rock fractures based on image description[J]. , 2010, 31(2): 371 -376 .
[4] WAN Zhi, DONG Hui, LIU Bao-chen. On choice of hyper-parameters of support vector machines for time series regression and prediction with orthogonal design[J]. , 2010, 31(2): 503 -508 .
[5] SUN Xi-yuan, LUAN Mao-tian, TANG Xiao-wei. Study of horizontal bearing capacity of bucket foundation on saturated soft clay ground[J]. , 2010, 31(2): 667 -672 .
[6] WANG Ming-nian, GUO Jun, LUO Lu-sen, Yu Yu, Yang Jian-min, Tan Zhon. Study of critical buried depth of large cross-section loess tunnel for high speed railway[J]. , 2010, 31(4): 1157 -1162 .
[7] TAN Feng-yi, Jiang Zhi-quan, Li Zhong-qiu, YAN Hui-he. Application of additive mass method to testing compacted density of filling material in Kunming new airport[J]. , 2010, 31(7): 2214 -2218 .
[8] CHAI Bo, YIN Kun-long, XIAO Yong-jun. Characteristics of weak-soft zones of Three Gorges Reservoir shoreline slope in new Badong county[J]. , 2010, 31(8): 2501 -2506 .
[9] WANG Guang-jin,YANG Chun-he ,ZHANG Chao,MA Hong-ling,KONG Xiang-yun ,HO. Research on particle size grading and slope stability analysis of super-high dumping site[J]. , 2011, 32(3): 905 -913 .
[10] HU Hai-jun, JIANG Ming-jing, ZHAO Tao, PENG Jian-bing, LI Hong. Effects of specimen-preparing methods on tensile strength of remolded loess[J]. , 2009, 30(S2): 196 -199 .