›› 2015, Vol. 36 ›› Issue (3): 625-632.doi: 10.16285/j.rsm.2015.03.003

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Measurement of shear bands of sand specimens with different water contents under constant strain rate based on digital image correlation method

WANG Xue-bin1, 2, 3, DU Ya-zhi2, PAN Yi-shan2, GU Lu2   

  1. 1. State Key Laboratory of Earthquake Dynamics, Institute of Geology, China Earthquake Administration, Beijing 100029, China; 2. College of Mechanics and Engineering, Liaoning Technical University, Fuxin, Liaoning 123000, China; 3. Institute of Computational Mechanics, Liaoning Technical University, Fuxin, Liaoning 123000, China
  • Received:2013-12-31 Online:2015-03-11 Published:2018-06-13

Abstract: Experimental research on the maximum shear strain fields of sand specimens with different water contents (12.7%-16.5%) under displacement-controlled loading condition (loading rate is 5 mm/min) is carried out with a digital image correlation method based on the particle swarm optimization algorithm. Also, the influence of the size of subset on the maximum shear strains at different positions of sand specimen is studied. It is found that with the increasing of the water content of sand specimen, deformation becomes even uniform, region of maximum shear strain becomes wider, which reflects an increase in the number of shear bands, and a raise in the maximum shear strain prior to microcrack initiating. With increasing the longitudinal strain, the maximum shear strain increases rapidly in a nonlinear form at region with higher strain, while it generally increases linearly at region with lower strain. After shear bands are generated, especially in a later deformational stage, the size of subset significantly affects the maximum shear strain. The evolution of the maximum shear strain with the size of subset is closely related to the position of subset.

Key words: sand specimen, water content, displacement-controlled loading, shear band, size of subset, maximum shear strain, digital image correlation method

CLC Number: 

  • TU 454
[1] SUN Hong, SONG Chun-yu, TENG Mu-wei, GE Xiu-run. Pore evolution characteristics of soft clay under loading [J]. Rock and Soil Mechanics, 2020, 41(1): 141-146.
[2] ZHENG Yao-lin, ZHANG Rong-jun, ZHENG Jun-jie, DONG Chao-qiang, LU Zhan, . Experimental study of flocculation-solidification combined treatment of hydraulically dredged mud at extra high-water content [J]. Rock and Soil Mechanics, 2019, 40(8): 3107-3114.
[3] YAN Ya-jing, YAN Yong-shuai, ZHAO Gui-zhang, ZHANG Tai-li, SUN Qiang, . Study on moisture migration in natural slope using high-density electrical resistivity tomography method [J]. Rock and Soil Mechanics, 2019, 40(7): 2807-2814.
[4] FU Long-long, ZHOU Shun-hua, TIAN Zhi-yao, TIAN Zhe-kan, . Force chain evolution in granular materials during biaxial compression [J]. Rock and Soil Mechanics, 2019, 40(6): 2427-2434.
[5] WANG Peng-fei, TAN Wen-hui, MA Xue-wen, LI Zi-jian, LIU Jing-jun, WU Yang-fan, . Relationship between strength parameter and water content of fault gouge with different degrees of consolidation [J]. Rock and Soil Mechanics, 2019, 40(5): 1657-1662.
[6] WANG Juan-juan, HAO Yan-zhou, WANG Tie-hang. Experimental study of structural characteristics of unsaturated compacted loess [J]. Rock and Soil Mechanics, 2019, 40(4): 1351-1357.
[7] JIN Xiao, YANG Wen, MENG Xian-Hong, LEI Le-Le, . Deduction and application of unfrozen water content in soil based on electrical double-layer theory [J]. Rock and Soil Mechanics, 2019, 40(4): 1449-1456.
[8] LI Xin-ming, KONG Ling-wei, GUO Ai-guo, . Experimental study of the influence of unloading rate on the shear mechanical properties of undisturbed expansive clay [J]. Rock and Soil Mechanics, 2019, 40(10): 3758-3766.
[9] CHEN Dun, MA Wei, WANG Da-yan, MU Yan-hu, LEI Le-le,WANG Yong-tao, ZHOU Zhi-wei, CAI Cong, . Experimental study of deformation characteristics of frozen clay under directional shear stress path [J]. , 2018, 39(7): 2483-2490.
[10] ZHU Shun-ran, XU Chao, DING Jin-hua,. Laminated shear test of geotextile-sand interface [J]. , 2018, 39(5): 1775-1780.
[11] WANG Xue-bin, ZHANG Nan, PAN Yi-shan, ZHANG Bo-wen, DU Ya-zhi,. Experimental studies of damages and shear band interactions for clay specimens in uniaxial compression [J]. , 2018, 39(4): 1168-1175.
[12] TAO Gao-liang, LI Jin, ZHUANG Xin-shan, XIAO Heng-lin, CUI Xi-lin, XU Wei-sheng. Determination of the residual water content of SWCC based on the soil moisture evaporation properties and micro pore characteristics [J]. , 2018, 39(4): 1256-1262.
[13] WU Meng-tao, LIU Fang-cheng, CHEN Ju-long, CHEN Lu. Influence of water content on dynamic shear modulus and damping ratio of rubber-sand mixture under large strains [J]. , 2018, 39(3): 803-814.
[14] CAO Ya-peng, WEN Tao, MI Hai-zhen, ZHOU Feng-xi, YANG Peng,. Salt expansion properties of sulfate saline soils under one time decrease of water content [J]. , 2018, 39(3): 881-888.
[15] CHEN Zi-quan, HE Chuan, WU Di, GAN Lin-wei, XU Guo-wen, YANG Wen-bo. Mechanical properties and energy damage evolution mechanism of deep-buried carbonaceous phyllite [J]. , 2018, 39(2): 445-456.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] CHENG Tao, YAN Ke-qin. Numerical simulation for influences of stress paths on earth's surface deformation[J]. , 2010, 31(2): 661 -666 .
[2] GUAN Yun-fei,GAO Feng,ZHAO Wei-bing,YU Jin. Secondary development of modified Cambridge model in ANSYS software[J]. , 2010, 31(3): 976 -980 .
[3] MI Hai-zhen, GAO Chun. Experimental study of expansive behaviors of quicklime[J]. , 2010, 31(4): 1253 -1256 .
[4] HE Xian-long, ZHAO Li-zhen. Analysis of shear wave velocity based on multiple cross-correlation functions[J]. , 2010, 31(8): 2541 -2545 .
[5] SUN Xi-ping, ZHANG Bao-hua, ZHANG Qiang, WANG Xiao-nan. Stability analysis of gravity quay when rubble bedding was eroded by water flow[J]. , 2010, 31(10): 3184 -3190 .
[6] SUN Jian , WANG Lian-guo , TANG Fu-rong , SHEN Yi-feng , GONG Shi-long. Microseismic monitoring failure characteristics of inclined coal seam floor[J]. , 2011, 32(5): 1589 -1595 .
[7] YANG Yong-xiang , ZHOU Jian , JIA Min-cai , HU Jin-hu. Visualization testing on liquefaction properties of saturated sands[J]. , 2011, 32(6): 1643 -1648 .
[8] XU Zheng-ming, XUE Qiang, ZHAO Ying. Research on time effect of modified sludge composites by triaxial tests on mechanical properties[J]. , 2011, 32(6): 1713 -1718 .
[9] CHEN Ming , HU Ying-guo , LU Wen-bo , YAN Peng , ZHOU Chuang-bing. Blasting excavation induced damage characteristics of diversion tunnel for Jinping cascade II hydropower station[J]. , 2011, 32(S2): 172 -177 .
[10] WANG Tao , LI Yang , ZHOU Yong , Lü Qing , LIU Da-wei. Research on safety specific report of phosphogypsum tailings ponds[J]. , 2011, 32(S2): 407 -412 .