›› 2015, Vol. 36 ›› Issue (3): 762-768.doi: 10.16285/j.rsm.2015.03.021

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Research on characteristics of energy dissipation and seepage of coal containing gas under triaxial compression

KANG Xiang-tao1, 2,HUANG Gun1, 2,SONG Zhen-long1, 2,DENG Bo-zhi1, 2,LUO Jia-yuan1, 2,ZHANG Xin1, 2   

  1. 1. State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400030, China; 2. College of Resources and Environmental Science, Chongqing University, Chongqing 400030, China
  • Received:2013-11-05 Online:2015-03-11 Published:2018-06-13

Abstract: This experiment takes the coal samples from coal seam K3 in Songzao Tonghua mine of Chongqing as an object. Triaxial compression tests under different confining pressures and gas pressures are conducted with a self-developed seepage device. In addition, the experiment studies the characteristics of energy dissipation and seepage of the coal samples during compression process with the method of energy accumulation and dissipation. The results show that the coal samples containing gas have the process of energy accumulation and dissipation during the failure of triaxial compression test. And the energy is absorbed and stored in the form of elastic strain energy within the coal samples. When the load reaches the peak, elastic strain energy stored in coal samples releases instantly into the dissipation energy, which becomes the driving force of coal sample damaging. There is a great influence of confining pressure and gas pressure on the dissipation characteristic of the coal. With the increasing of confining pressure, the total energy, the stored elastic strain energy and the dissipation energy of the coal sample would increase. With the increasing of gas pressure, the total energy and dissipation energy of the coal sample would slowly increase, while the stored elastic strain energy would gradually decrease. Confining pressure and gas pressure also have a great influence on the permeability of coal samples. Before the peak stress, the permeability of coal samples would decrease gradually with the increasing of confining pressure and would increases with the increasing of gas pressure. The study results can provide some references for prevention of coal and gas outburst as well as extraction of coal seam gas.

Key words: coal containing gas, gas pressure, mechanical characteristics, energy accumulation, energy dissipation, seepage characteristics

CLC Number: 

  • TD315
[1] PENG Shou-jian, GUO Shi-chao, XU Jiang, GUO Chen-ye, ZHANG Chao-lin, JIA Li, . Impacts of mining-induced stress concentration on coal-bed methane drainage in boreholes parallel with bedding [J]. Rock and Soil Mechanics, 2019, 40(S1): 99-108.
[2] ZHAO Guo-yan, LI Zhen-yang, WU Hao, WANG En-jie, LIU Lei-lei. Dynamic failure characteristics of sandstone with non-penetrating cracks [J]. Rock and Soil Mechanics, 2019, 40(S1): 73-81.
[3] PENG Shou-jian, YUE Yu-qing, LIU Yi-xin, XU Jiang, . Anisotropic characteristics and shear mechanical properties of different genetic structural planes [J]. Rock and Soil Mechanics, 2019, 40(9): 3291-3299.
[4] ZHANG Tian-jun, PANG Ming-kun, JIANG Xing-ke, PENG Wen-qing, JI Xiang, . Influence of negative pressure on gas percolation characteristics of coal body in perforated drilling hole [J]. Rock and Soil Mechanics, 2019, 40(7): 2517-2524.
[5] MA De-peng, ZHOU Yan, LIU Chuan-xiao, SHANG Yan-dong, . Energy evolution characteristics of coal failure in triaxial tests under different unloading confining pressure rates [J]. Rock and Soil Mechanics, 2019, 40(7): 2645-2652.
[6] ZHAO Zhen-hua, ZHANG Xiao-jun, LI Xiao-cheng, . Experimental study of stress relaxation characteristics of hard rocks with pressure relief hole [J]. Rock and Soil Mechanics, 2019, 40(6): 2192-2199.
[7] XU Jiang, SONG Xiao-zheng, PENG Shou-jian, ZHANG Chao-lin, LI Qi-xian, ZHANG Xiao-lei, . Physical simulation experiment on influence of borehole spacing along the seam on effect of gas drainage [J]. Rock and Soil Mechanics, 2019, 40(12): 4581-4589.
[8] XIAO Xiao-chun, FAN Yu-feng, WU Di, DING Xin, WANG Lei, ZHAO Bao-you, . Energy dissipation feature and rock burst risk assessment in coal-rock combinations [J]. Rock and Soil Mechanics, 2019, 40(11): 4203-4212.
[9] WANG Peng-fei, LI Chang-hong, MA Xue-wen, LI Zi-jian, LIU Jing-jun, WU Yang-fan, . Experimental study of seepage characteristics of soil-rock mixture with different rock contents in fault zone [J]. Rock and Soil Mechanics, 2018, 39(S2): 53-61.
[10] DING Hong-yan, JIA Nan, ZHANG Pu-yang, . Research of seepage characteristics and penetration resistance during installation of bucket foundations in sand [J]. , 2018, 39(9): 3130-3138.
[11] CHEN Wei-chang, WANG Si-jing, LI Li, ZHANG Xiao-ping, WANG Yan-bing, . Test on mechanical characteristics of modified ginger nut [J]. , 2018, 39(5): 1796-1804.
[12] DUAN Min-ke, JIANG Chang-bao, YU Huan, LU Tian-yu, NIU Bin-wei, SUN Dong-ling,. Experimental research on energy dissipation and seepage properties of coal under loading-unloading conditions at different stress levels [J]. , 2018, 39(4): 1346-1354.
[13] XU Jiang , WANG Wei, LIU Yi-xin , PENG Shou-jian , WU Shan-kang, QU Jia-mei, XIAO Zhi-yuan, . Experimental study on shear-seepage for coal-rock shear fracture surface morphological characteristics [J]. Rock and Soil Mechanics, 2018, 39(12): 4313-4324.
[14] WANG Yi-qun, HONG Yi, GUO Zhen, WANG Li-zhong, . Micro-and macro-mechanical behavior of crushable calcareous sand in South China Sea [J]. , 2018, 39(1): 199-206.
[15] WU Yong-sheng, TAN Zhong-sheng, YU Yu, JIANG Bo, YU Xian-bin,. Anisotropically mechanical characteristics of Maoxian group phyllite in northwest of Sichuan province [J]. , 2018, 39(1): 207-215.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HUANG Jian-hua,SONG Er-xiang. Research on mechanical properties of frozen curtain in large anchorage foundation pit engineering[J]. , 2009, 30(11): 3372 -3378 .
[2] WANG Guan-shi, LI Chang-hong, CHEN Bao-jun, LI Sh-ihai. Propagation law of stress wave in nonlinear structural surface medium[J]. , 2009, 30(12): 3747 -3752 .
[3] WANG Zhao-yang, XU Qiang, NI Wan-kui. Study of undisturbed loess stress-strain relation during CT test[J]. , 2010, 31(2): 387 -391 .
[4] DENG Qin,GUO Ming-wei,LI Chun-guang,GE Xiu-run. Vector sum method for slope stability analysis based on boundary element method[J]. , 2010, 31(6): 1971 -1976 .
[5] WAN Shao-shi, NIAN Ting-kai, JIANG Jing-cai, LUAN Mao-tian. Discussion on several issues in slope stability analysis based on shear strength reduction finite element methods (SSR-FEM)[J]. , 2010, 31(7): 2283 -2288 .
[6] YAN Tie, LI Wei, BI Xue-liang. Research on effective stress model in porous media based on fractal method[J]. , 2010, 31(8): 2625 -2629 .
[7] LIU Jia, WANG Dong. Tension resistance and suction of plate anchor foundation in normally consolidated clay[J]. , 2009, 30(3): 735 -740 .
[8] ZHAO Shang-yi, ZHENG Ying-ren, LI An-hong, QIU Wen-ping, TANG Xiao-song. Application of multi-row embedded anti-slide piles to landslide of Wulong county government[J]. , 2009, 30(S1): 160 -164 .
[9] LIU Zhen-ping, HE Huai-jian, ZHU Fa-hua. Study of technology of fast 3D modeling and visualization based on borehole data[J]. , 2009, 30(S1): 260 -266 .
[10] WEI Hou-zhen, YAN Rong-tao, WEI Chang-fu, WU Er-lin, CHEN Pan, TIAN Hui-hui. Summary of researches for phase-equilibrium of natural gas hydrates in bearing sediments[J]. , 2011, 32(8): 2287 -2294 .