›› 2015, Vol. 36 ›› Issue (3): 827-836.doi: 10.16285/j.rsm.2015.03.029

• Geotechnical Engineering • Previous Articles     Next Articles

Measurement and distribution of earth pressure of high fill in loess gully

ZHU Cai-hui, LI Ning, YUAN Ji-guo   

  1. Institute of Geotechnical Engineering, Xi'an University of Technology, Xi'an, Shaanxi 710048, China
  • Received:2013-12-25 Online:2015-03-11 Published:2018-06-13

Abstract: This paper presents improvement in measurement technology and space distribution of earth pressure of high fill in loess gully. The numerical simulation, laboratory calibration test are used to investigate the factors influencing the measuring results of earth pressure with earth pressure cell in high fill. It is found that the depth-span ratio of the hole where earth pressure cell is embedded, compaction degree of the fill materials, as well as gully slope, etc., have more significant impacts on testing earth pressure. Therefore the depth-span ratio λ is better recommended to be larger than 0.6. By analyzing in-situ observations at Lüliang airport test section, two earth pressure empirical formulae for middle and marginal regions of the fill respectively are presented, incorporating fill height, weighted average unit weight, slope angle. Using numerical back-analysis, the spatial distribution rules of earth pressure of the high fill are obtained. Comparatively analyses show that the rules from back-analysis are basically in agreement with the ones from empirical formulae. This study can provide references for underground structure design and foundation deformation calculation in similar high fill engineering in loess gully.

Key words: loess gully, high fill, earth pressure (EP) distribution, calibration of earth pressure cell (EPC), in-situ monitoring, numerical analysis

CLC Number: 

  • TU 444
[1] ZHU Cai-hui, CUI Chen, LAN Kai-jiang, DONG Yong-qiang. The effects of the degradation of brick-clay structure and demolition of embedded buildings on the stability of Yulin City Wall [J]. Rock and Soil Mechanics, 2019, 40(8): 3153-3166.
[2] LI Ning, YANG Min, LI Guo-feng. Revisiting the application of finite element method in geotechnical engineering [J]. Rock and Soil Mechanics, 2019, 40(3): 1140-1148.
[3] ZHENG Li-ming, ZHANG Yang-yang, LI Zi-feng, MA Ping-hua, YANG Xin-jun, . Analysis of seepage changes during poroelastic consolidation process with porosity and pressure variation under low-frequency vibration [J]. Rock and Soil Mechanics, 2019, 40(3): 1158-1168.
[4] ZHANG Ye-qin, CHEN Bao-guo, MENG Qing-da, XU Xin, . Stress mechanism and foundation contact pressure of high fill culvert under load reduction condition [J]. Rock and Soil Mechanics, 2019, 40(12): 4813-4818.
[5] HUANG Jian, YAO Yang-ping. A practical model for predicting the failure time of high fill slope [J]. Rock and Soil Mechanics, 2019, 40(10): 4057-4064.
[6] WANG Jian-jun, CHEN Fu-quan, LI Da-yong. A simple solution of settlement for low reinforced embankments on Kerr foundation [J]. Rock and Soil Mechanics, 2019, 40(1): 250-259.
[7] DONG Zhi-hong, DING Xiu-li, HUANG Shu-ling, WU Ai-qing, CHEN Sheng-hong, ZHOU Zhong, . Analysis of ageing-stress characteristics and long-term bearing risk of anchor cable for a large cavern in high geo-stress area [J]. Rock and Soil Mechanics, 2019, 40(1): 351-362.
[8] YAN Shu-wang, LI Jia, YAN Yue, CHEN Hao,. Research on stable limit depth of vertical cylinder hole in cohesive soil ground [J]. , 2018, 39(4): 1176-1181.
[9] ABI ERDI, ZHENG Ying-ren, FENG Xia-ting, CONG Yu. Relationship between particle micro and macro mechanical parameters of parallel-bond model [J]. , 2018, 39(4): 1289-1301.
[10] LI Yi-fan, DONG Shi-ming, PAN Xin, LI Nian-bin, YUAN Ye. Experimental study of mixed-mode I/III fracture of sandstone [J]. , 2018, 39(11): 4063-4070.
[11] LIU Tian-xiang, WANG Zhong-fu, . Analysis of interaction when tunnel orthogonal crossing deep-seated landslide and the corresponding control measures [J]. , 2018, 39(1): 265-274.
[12] SONG Xu-gen, CHEN Cong-xin, XIA Kai-zong, CHEN Long-long, FU Hua,. Research on deformation mechanism and feasibility of continuous use of mine shaft [J]. , 2017, 38(S1): 331-342.
[13] XU Du, FENG Xia-ting, LI Shao-jun, WU Shi-yong, QIU Shi-li, ZHOU Yang-yi, GAO Yao-hui,. Research on key information extraction of rock mass deformation and failure characteristics in Jinping underground laboratory based on 3 D laser scanning technique [J]. , 2017, 38(S1): 488-495.
[14] MA Shao-kun, SHAO Yu, LIU Ying, FENG Ye, WEI Chao-hua,. Effects of construction sequences of twin tunneling at different depths on the adjacent pipeline [J]. , 2017, 38(9): 2487-2495.
[15] ZHENG Jun-jie, GUO Zhen-shan, CUI Lan, ZHANG Jun,. Stability analysis of expansive soil tunnel considering unsaturated seepage and moistening swelling deformation [J]. , 2017, 38(11): 3271-3277.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU En-long. Breakage mechanics for geomaterials: Breakage mechanism of structural blocks and binary-medium model[J]. , 2010, 31(S1): 13 -22 .
[2] YANG Jian-min, ZHENG Gang. Classification of seepage failures and opinion to formula for check bursting instability in dewatering[J]. , 2009, 30(1): 261 -264 .
[3] HE Si-ming, WU Yong, LI Xin-po. Research on restitution coefficient of rock fall[J]. , 2009, 30(3): 623 -627 .
[4] ZHANG Bo, Li Shu-cai, YANG Xue-ying, WANG Xi-ping. Research on seismic wave input with three-dimensional viscoelastic artificial boundary[J]. , 2009, 30(3): 774 -778 .
[5] YE Fei, ZHU He-hua, HE Chuan. Back-filled grouts diffusion model and its pressure to segments of shield tunnel[J]. , 2009, 30(5): 1307 -1312 .
[6] ZHANG Zhi-qiang, LI Ning, CHEN Fang-fang, ZHANG Ping. Review and status of research on failure mode of nonpenetrative fractured rock mass[J]. , 2009, 30(S2): 142 -148 .
[7] WANG Yun-Gang ,ZHANG Guang ,HU Qi. Study of force characteristics of battered pile foundation[J]. , 2011, 32(7): 2184 -2190 .
[8] SONG Yi-min , JIANG Yao-dong , MA Shao-peng , YANG Xiao-bin , ZHAO Tong-bin . Evolution of deformation fields and energy in whole process of rock failure[J]. , 2012, 33(5): 1352 -1356 .
[9] ZHOU Ai-zhao , LU Ting-hao , JIANG Peng-ming . General description of soil-structure interface constitutive model based on generalized potential theory[J]. , 2012, 33(9): 2656 -2662 .
[10] LU Kun-lin, ZHU Da-yong, YANG Yang. Calculation charts for estimating safety factors of 3D homogeneous slopes[J]. , 2012, 33(S2): 111 -117 .