›› 2015, Vol. 36 ›› Issue (4): 913-922.doi: 10.16285/j.rsm.2015.04.001

• Fundamental Theroy and Experimental Research •     Next Articles

Bootstrap method for joint probability distribution identification of correlated geotechnical parameters

TANG Xiao-song1, 2,LI Dian-qing1, 2,ZHOU Chuang-bing1, 2,PHOON Kok-kwang1, 2   

  1. 1. State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, Hubei 430072, China; 2. Key Laboratory of Rock Mechanics in Hydraulic Structural Engineering of Education Ministry, Wuhan University, Wuhan, Hubei 430072, China
  • Received:2013-11-26 Online:2015-04-11 Published:2018-06-13

Abstract: Identification of the best-fit joint probability distribution for a small set of samples is a challenging problem. Based on the Bootstrap method, an optimum marginal distribution function and an optimum Copula function for identifying the geotechnical parameters with a small sample size are proposed. The Copula method for constructing the joint probability distribution function (PDF) for correlated geotechnical parameters is briefly introduced, and then the Akaike Information Criterion (AIC) is adopted to identify the optimum marginal distribution function and Copula function. The identification results are represented by a collection of the weight factors such that each candidate marginal distribution function and copula function become the optimum (best-fit). Four measured datasets of the hyperbolic load-settlement curve-fitting parameters of piles are used to demonstrate the validity of the proposed method. The results indicate that the sample mean, sample standard deviation and sample correlation coefficient derived from the geotechnical parameters with a small sample size are relatively scattering, leading to a higher variation in the AIC values associated with the fitted marginal distributions and Copulas. The proposed bootstrap method can effectively consider the variation of the AIC values of the fitted marginal distributions function and Copulas function. It can also account for the possibilities that each candidate marginal distribution function and Copula function become the optimum. The bootstrap method provides a general and practical tool for identifying the best-fit marginal distribution function and Copula function with a small sample size.

Key words: geotechnical parameters, correlation, Bootstrap method, joint probability distribution, marginal distribution function, Copula function

CLC Number: 

  • TU 473
[1] JIANG Shui-hua, FENG Ze-wen, LIU Xian, JIANG Qing-hui, HUANG Jin-song, ZHOU Chuang-bing. Inference of probability distributions of geotechnical parameters using adaptive Bayesian updating approach [J]. Rock and Soil Mechanics, 2020, 41(1): 325-335.
[2] TIAN Mi, SHENG Xiao-tao, . Method for determining minimum test data quantity for geotechnical engineering investigation [J]. Rock and Soil Mechanics, 2019, 40(S1): 400-408.
[3] LIU Zu-qiang, LUO Hong-ming, ZHENG Min, SHI Yun-jiang, . Study on expansion-shrinkage characteristics and deformation model for expansive soils in canal slope of South-to-North Water Diversion Project [J]. Rock and Soil Mechanics, 2019, 40(S1): 409-414.
[4] SONG Yi-min, DENG Lin-lin, LÜ Xiang-feng, XU Hai-liang, ZHAO Ze-xin, . Study of acoustic emission characteristics and deformation evolution during rock frictional sliding [J]. Rock and Soil Mechanics, 2019, 40(8): 2899-2906.
[5] LIANG Ke, CHEN Guo-xing, HE Yang, LIU Jing-ru, . An new method for calculation of dynamic modulus and damping ratio based on theory of correlation function [J]. Rock and Soil Mechanics, 2019, 40(4): 1368-1376.
[6] ZHONG Guo-qiang, WANG Hao, LI Li, WANG Cheng-tang, XIE Bi-ting, . Prediction of maximum settlement of foundation pit based on SFLA-GRNN model [J]. Rock and Soil Mechanics, 2019, 40(2): 792-798.
[7] FEI Suo-zhu, TAN Xiao-hui, SUN Zhi-hao, DU Lin-feng. Analysis of autocorrelation distance of soil based on microstructure simulation [J]. Rock and Soil Mechanics, 2019, 40(12): 4751-4758.
[8] ZHANG Wen-sheng, LUO Qiang, JIANG Liang-wei, LI Ang, . Reliability analysis of soil slope considering moment estimation bias using small sample geotechnical parameters [J]. Rock and Soil Mechanics, 2019, 40(1): 315-324.
[9] WU Tian-hua, ZHOU Yu, WANG Li, SUN Jin-hai, ZHAO Huan, SUN Zheng, . Mesoscopic study of interaction mechanism between circular hole and fissures in rock under uniaxial compression [J]. Rock and Soil Mechanics, 2018, 39(S2): 463-472.
[10] LI Zheng-wei, ZHANG Yan-jun, ZHANG Chi, XU Tian-fu,. Experiment on convection heat transfer characteristics in a single granite fracture [J]. , 2018, 39(9): 3261-3269.
[11] ABI ERDI, ZHENG Ying-ren, FENG Xia-ting, CONG Yu. Relationship between particle micro and macro mechanical parameters of parallel-bond model [J]. , 2018, 39(4): 1289-1301.
[12] HUANG Xiao-hong, SUN Guo-qing, ZHANG Kai-yue,. Localisation of Geiger acoustic emission source based on all-phase analysis and several times cross-correlation [J]. , 2018, 39(4): 1362-1368.
[13] SONG Yi-min, XING Tong-zhen, LÜ Xiang-feng, ZHAO Ze-xin, DENG Lin-lin, . Fracture characteristics of granite with mode-I pre-crack at different loading rates [J]. Rock and Soil Mechanics, 2018, 39(12): 4369-4375.
[14] LI Lu-lu, GAO Yong-tao, ZHOU Yu, JIN Ai-bing. Meso-scale modelling mechanical properties of rock-like material containing trident cracks under uniaxial compression [J]. , 2018, 39(10): 3668-3676.
[15] YUAN Yan-ling, GUO Qin-qin, ZHOU Zheng-jun, WU Zhen-yu, CHEN Jian-kang, YAO Fu-hai,. Back analysis of material parameters of high core rockfill dam considering parameters correlation [J]. , 2017, 38(S1): 463-470.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] CHU Xi-hua, XU Yuan-jie. Studies on transformation from M-C criterion to Drucker-Prager criterions based on distortion energy density[J]. , 2009, 30(10): 2985 -2990 .
[2] LIU Dou-dou, CHEN Wei-zhong, YANG Jian-ping, TAN Xian-jun, ZHOU X. Experimental research on strength characteristic of brittle rock unloading confining pressure[J]. , 2009, 30(9): 2588 -2594 .
[3] SUN Ping, PENG Jian-bing, YIN Yue-ping, WU Shu-ren. Tensile test and simulation analysis of fracture process of loess[J]. , 2010, 31(2): 633 -637 .
[4] ZHANG Xian-wei, WANG Chang-ming, LI Jun-xia, MA Dong-he, CHEN Duo-cai. Variation characteristics of soft clay micropore in creep condition[J]. , 2010, 31(4): 1061 -1067 .
[5] LU Ying-fa, CHENG Zhu-lei, XIE Wen-liang, Lü Zhi-zhong. Application of geotechnics to sanitation landfill of refuse[J]. , 2009, 30(1): 91 -98 .
[6] WANG Zhi-ping,HU Min-yun,XIA Ling-tao. Research on compressibility of municipal solid waste by laboratory tests[J]. , 2009, 30(6): 1681 -1686 .
[7] JIA Qiang, YING Hui-qing, ZHANG Xin. Construction of basement in existing buildings by static bolt-pile[J]. , 2009, 30(7): 2053 -2057 .
[8] LU Jun-fu,WANG Ming-nian,JIA Yuan-yuan,YU Yu, TAN Zhong-sheng. Research on construction time of secondary lining of large section loess tunnel for high-speed railway[J]. , 2011, 32(3): 843 -848 .
[9] WANG Cheng-hua, AN Jian-guo. Numerical analyses of vertical bearing capacity of foundations with enlarged pile group[J]. , 2011, 32(S2): 580 -585 .
[10] HUANG Jun-yu , XU Song-lin , WANG Dao-rong , HU Shi-sheng . Investigation on dynamic multiscale model for brittle granular materials[J]. , 2013, 34(4): 922 -932 .