›› 2015, Vol. 36 ›› Issue (4): 1015-1020.doi: 10.16285/j.rsm.2015.04.015

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Experimental study of the local scour around the composite bucket foundations of wind turbines under unidirectional current

YU Tong-shun1, 2,LIAN Ji-jian2,QI Yue3,WANG Hong-zhen2   

  1. 1. College of Engineering, Ocean University of China, Qingdao, Shandong 266100, China; 2. State Key Laboratory of Hydraulic Engineering Simulation and Security, Tianjin University, Tianjin 300072, China; 3. Shandong Hi-speed Qingdao Development Co., Ltd., Qingdao, Shandong 266100, China
  • Received:2014-09-22 Online:2015-04-11 Published:2018-06-13

Abstract: Composite bucket foundation is a new kind of wide-shallow foundation for offshore wind turbines. Compared to the local scour around a deep foundation such as pile foundation, scouring around composite bucket foundation can significantly influence the safety of wind turbine. According to an engineering instance, a test site for scour experiment is built and the monitoring points are displayed. A series of scale model tests is performed on the local scour around a composite bucket foundation model, and the scales of 1:20, 1:40 and 1:70 are adopted in the experiments. The morphology of the scour hole around the foundation, equilibrium scour time and maximum scour depth are investigated, and the maximum scour depth of the seabed around composite bucket foundations is determined according to the results of the scale model tests. The characteristics of local scour around composite bucket foundation are clearly captured in the experiments, providing some theoretical guidance for the application of composite bucket foundations.

Key words: composite bucket foundation, unidirectional current, local scour, experiment

CLC Number: 

  • TV 148
[1] CHEN He, ZHANG Yu-fang, ZHANG Xin-min, WEI Shao-wei, . Full-scale model experiments on anti-sliding characteristics of high-pressure grouting steel-tube micropiles [J]. Rock and Soil Mechanics, 2020, 41(2): 428-436.
[2] YANG Zhen-xing, CHEN Jian, SUN Zhen-chuan, YOU Yong-feng, ZHOU Jian-jun, LÜ Qian-qian, . Experimental study on improved seawater slurry for slurry shield [J]. Rock and Soil Mechanics, 2020, 41(2): 501-508.
[3] ZHANG Feng-rui, JIANG An-nan, YANG Xiu-rong, SHEN Fa-yi. Experimental and model research on shear creep of granite under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2020, 41(2): 509-519.
[4] WANG Pei-tao, HUANG Zheng-jun, REN Fen-hua, ZHANG Liang, CAI Mei-feng, . Research on direct shear behaviour and fracture patterns of 3D-printed complex jointed rock models [J]. Rock and Soil Mechanics, 2020, 41(1): 46-56.
[5] ZHAO Xiao-yan, WAN Yu-hao, ZHANG Xiao-bing. Experimental study of fragment orientation of phyllite talus at Whenchuan-Maerkang expressway [J]. Rock and Soil Mechanics, 2020, 41(1): 175-184.
[6] LI Zhi-cheng, FENG Xian-dao, SHENG Li-long, . Experimental study of deformation characteristics of pebble cushion with furrow for immersed tunnel [J]. Rock and Soil Mechanics, 2019, 40(S1): 189-194.
[7] WANG Dong-po, CHEN Zheng, HE Si-ming, CHEN Ke-jian, LIU Fa-ming, LI Ming-qing, . Physical model experiments of dynamic interaction between debris flow and bridge pier model [J]. Rock and Soil Mechanics, 2019, 40(9): 3363-3372.
[8] ZHANG Lei, WANG Ning-wei, JING Li-ping, FANG Chen, DONG Rui, . Comparative experiments of different electrode materials on electro-osmotic consolidation [J]. Rock and Soil Mechanics, 2019, 40(9): 3493-3501.
[9] ZHOU Hui, ZHENG Jun, HU Da-wei, ZHANG Chuan-qing, LU Jing-jing, GAO Yang, ZHANG Wang, . Deterioration mechanism of tunnel lining structure in the carbonated water environment [J]. Rock and Soil Mechanics, 2019, 40(7): 2469-2477.
[10] FENG Jun, WANG Yang, WU Hong-gang, LAI Bing, XIE Xian-dang, . Field pullout tests of basalt fiber-reinforced polymer ground anchor [J]. Rock and Soil Mechanics, 2019, 40(7): 2563-2573.
[11] FU Hong-yuan, LIU Jie, ZENG Ling, BIAN Han-bing, SHI Zhen-ning, . Deformation and strength tests of pre-disintegrating carbonaceous mudstone under loading and soaking condition [J]. Rock and Soil Mechanics, 2019, 40(4): 1273-1280.
[12] LUO Lin-ge, CUI Li-chuan, SHI Hai-yang, GUO Chao, YI Shao-ping, . Experimental study of bearing capacity of underground diaphragm wall-gravity anchorage composite foundation [J]. Rock and Soil Mechanics, 2019, 40(3): 1049-1058.
[13] ZHENG Guang, XU Qiang, PENG Shuang-qi. Calculation model of the long-runout distance of rock avalanche [J]. Rock and Soil Mechanics, 2019, 40(12): 4897-4906.
[14] LIU Wei-ning, JIANG Bo-long, MA Meng, GAO Jian, . Elementary experimental investigation of the periodic piles for vibration isolation of design frequency range [J]. Rock and Soil Mechanics, 2019, 40(11): 4138-4148.
[15] ZHANG Feng-rui, JIANG An-nan, JIANG Zong-bin, ZHANG Guang-tao. Experimental study of damage and creep property of rock under coupled chemical corrosion and freeze-thaw cycle [J]. Rock and Soil Mechanics, 2019, 40(10): 3879-3888.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YIN Jie,GAO Yu-feng,HONG Zhen-shun. Research on undrained shear strength tests of soft Lianyungang clay[J]. , 2009, 30(11): 3297 -3301 .
[2] CHEN Shao-jie, GUO Wei-jia, YANG Yong-jie. Experimental study of creep model and failure characteristics of coal[J]. , 2009, 30(9): 2595 -2598 .
[3] ZHAO Lian-heng,LUO Qiang,LI Liang,YANG Feng,DAN Han-cheng. Upper bound quasi-static analysis of dynamic stability of layered rock slopes[J]. , 2010, 31(11): 3627 -3634 .
[4] LIU Xiao-li, ZHANG Dan-dan, LIU Kai, SU Yuan-yuan. Design and application of a kind of direct shear model test apparatus[J]. , 2010, 31(S2): 475 -480 .
[5] KANG Yong-jun,YANG Jun,SONG Er-xiang. Calculation method and parameter research for time-history of factor of safety of slopes subjected to seismic load[J]. , 2011, 32(1): 261 -268 .
[6] LU Kun-lin, YANG Yang. Approximate calculation method of active earth pressure considering displacement[J]. , 2009, 30(2): 553 -557 .
[7] LI Rong-jian,YU Yu-zhen,Lü He,LI Guang-xin. Dynamic centrifuge modeling of piles-reinforced slope on saturated sandy foundation[J]. , 2009, 30(4): 897 -902 .
[8] XIAO Cheng-zhi, SUN Jian-cheng, LI Yu-run, LIU Xiao-peng. Mechanism analysis of ecological slope protection against runoff erosion by grass jetting on 3D geomat[J]. , 2011, 32(2): 453 -458 .
[9] ZHOU Wan-huan , YIN Jian-hua. Finite element modeling soil nail pullout behavior and effects of overburden pressure and dilation[J]. , 2011, 32(S1): 691 -0696 .
[10] QIAN Jian-gu , HUANG Mao-song. Micro-macro mechanismic analysis of plastic anisotropy in soil[J]. , 2011, 32(S2): 88 -93 .