›› 2015, Vol. 36 ›› Issue (4): 1135-1140.doi: 10.16285/j.rsm.2015.04.030

• Geotechnical Engineering • Previous Articles     Next Articles

Relationship between percolation and fractal properties of mining-induced crack network in coal and rock masses

LI Dong-ping1, 2, 3,ZHOU Hong-wei1, 3,XUE Dong-jie1, 3,YI Hai-yang1, 3,GAO Hai-lian1, 3   

  1. 1. School of Mechanics and Civil Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China; 2. School of Civil Engineering, Hebei University of Engineering, Handan, Hebei 056038, China; 3. State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology (Beijing), Beijing 100083, China
  • Received:2014-04-08 Online:2015-04-11 Published:2018-06-13

Abstract: The percolation and fractal theory are employed for analyzing evolution of the crack networks in the coal and rock masses at the site of the coal mining face No. 15-22060 at Mine No.8 of Pingdingshan Coal Mining Group. The evolving characteristics and corresponding relationship of percolation probability and fractal dimensions with advancement of the coal mining face are determined. The results show that, being controlled by initiation and propagation of transverse delamination fractures and vertical broken fractures, the permeability probability linearly increases in a stage-wise way with advancement of the coal mining face and the magnitude of amplification is increasing. The crack network propagates into the coal body ahead of mining face and the overburden strata with advancement of the coal mining face. The length, width, quantity and distribution of cracks play dominant roles in fractal dimensions, and evolution of fractal dimensions falls into 3 stages. Relationships between percolation probability and fractal dimensions of crack network in coal and rock masses can be fitted using a power function for the first stage and two linear functions for the second and the third stage. These results lay a foundation for determining the equivalent permeability of the crack networks in coal and rock masses.

Key words: coal and rock mass, mining-induced crack, fractal dimension, percolation probability

CLC Number: 

  • TD 325
[1] SUN Hong, SONG Chun-yu, TENG Mu-wei, GE Xiu-run. Pore evolution characteristics of soft clay under loading [J]. Rock and Soil Mechanics, 2020, 41(1): 141-146.
[2] ZHAO Guo-yan, LI Zhen-yang, WU Hao, WANG En-jie, LIU Lei-lei. Dynamic failure characteristics of sandstone with non-penetrating cracks [J]. Rock and Soil Mechanics, 2019, 40(S1): 73-81.
[3] ZHANG Xiao-yan, CAI Yan-yan, ZHOU Hao-ran, YANG Yang, LI Yu-long, . Shear behaviors and fractal dimensions of carol sand at large shear strains [J]. Rock and Soil Mechanics, 2019, 40(2): 610-615.
[4] XIAO Xiao-chun, FAN Yu-feng, WU Di, DING Xin, WANG Lei, ZHAO Bao-you, . Energy dissipation feature and rock burst risk assessment in coal-rock combinations [J]. Rock and Soil Mechanics, 2019, 40(11): 4203-4212.
[5] ZENG Yin, LIU Jian-feng, ZHOU Zhi-wei, WU Chi, LI Zhi-cheng, . Creep acoustic emission and damage evolution of salt rock under uniaxial compression [J]. Rock and Soil Mechanics, 2019, 40(1): 207-215.
[6] XIANG Gao, LIU Jian-feng, LI Tian-yi, XU-YANG Meng-di, DENG Chao-fu, WU Chi,. Study of fractal and damage characteristic in the deformation and failure process of salt rack based on acoustic emission [J]. , 2018, 39(8): 2905-2912.
[7] MA Qin-yong, GAO Chang-hui,. Energy absorption and fractal characteristics of basalt fiber-reinforced cement- soil under impact loads [J]. , 2018, 39(11): 3921-3928.
[8] CHEN Yi, ZHANG Hu-yuan, YANG Long, . Analogy study on evolution of microstructure of earthen monument during natural weathering process [J]. , 2018, 39(11): 4117-4124.
[9] YANG Peng, HUA Xin-zhu, LIU Qin-jie, YANG Ming, CHENG Shi-xing, WU Biao,. Experimental study of dynamic evolution characteristic of floor fractal dimension of gob-side entry retaining with large section in deep mine [J]. , 2017, 38(S1): 351-358.
[10] WANG Zhi-gang, GUO Xiao-fei. Study of roof fissures of mining induced roadway in Shuanghe Coal Mine based on fractal theory [J]. , 2017, 38(8): 2377-2384.
[11] XIANG Guo-sheng, XU Yong-fu, CHEN Tao, JIANG Hao,. Fractal model for swelling deformation of bentonite in salt solution [J]. , 2017, 38(1): 75-80.
[12] YAO Shao-feng, ZHANG Zhen-nan, GE Xiu-run, QIU Yi-ping, XU Jin-ming,. Correlation between fracture energy and geometrical characteristic of mesostructure of marble [J]. , 2016, 37(8): 2341-2346.
[13] YU Bang-yong,CHEN Zhan-qing,WU Jiang-yu,LI Qiang,DING Qi-le,. Experimental study of compaction and fractal properties of grain size distribution of saturated crushed mudstone with different gradations [J]. , 2016, 37(7): 1887-1894.
[14] WU Ying,MA Gang,ZHOU Wei,YANG Li-fu. Optimization of gradation of rockfill materials based on the fractal theory [J]. , 2016, 37(7): 1977-1985.
[15] ZHAO Na, ZUO Yong-zhen, WANG Zhan-bin, YU Sheng-guan. Grading scale method for coarse-grained soils based on fractal theory [J]. , 2016, 37(12): 3513-3519.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WEI Li,CHAI Shou-xi,CAI Hong-zhou,WANG Xiao-yan,LI Min3,SHI Qian. Research on tensility of wheat straw for reinforced material[J]. , 2010, 31(1): 128 -132 .
[2] HUANG Qing-xiang, ZHANG Pei, DONG Ai-ju. Mathematical model of “arch beam” of thick sandy soil layer movement in shallow seam[J]. , 2009, 30(9): 2722 -2726 .
[3] JING Zhi-dong, LIU Jun-xin. Experimental research on dynamic deformations of semi-rigid structures of subgrade bed-mudstone of red beds[J]. , 2010, 31(7): 2116 -2121 .
[4] LEI Jin-bo,CHEN Cong-xin. Research on load transfer mechanism of composite foundation of rigid pile with cap based on hyperbolic model[J]. , 2010, 31(11): 3385 -3391 .
[5] WANG Deng-ke,LIU Jian,YIN Guang-zhi,WEI Li-de. Research on influencing factors of permeability change for outburst-prone coal[J]. , 2010, 31(11): 3469 -3474 .
[6] ZHANG Cheng-ping,ZHANG Ding-li,LUO Jian-jun,WANG Meng-shu,WU Jie-pu. Remote monitoring system applied to the construction of metro station undercrossing existing metro tunnel[J]. , 2009, 30(6): 1861 -1866 .
[7] WANG Jun, CAO Ping, LI Jiang-teng, LIU Ye-ke. Analysis of stability of tunnel-slope with rheological medium under rainfall infiltration[J]. , 2009, 30(7): 2158 -2162 .
[8] ZHANG Yuan, WAN Zhi-jun, KANG Jian-rong, ZHAO Yang-sheng. Analysis of stage characteristics of sandstone permeability under conditions of temperature and triaxial stress[J]. , 2011, 32(3): 677 -683 .
[9] ZHANG Xue-chan , GONG Xiao-nan , YIN Xu-yuan , ZHAO Yu-bo. Monitoring analysis of retaining structures for Jiangnan foundation pit of Qingchun road river-crossing tunnel in Hangzhou[J]. , 2011, 32(S1): 488 -0494 .
[10] TANG Shi-bin, TANG Chun-an, LI Lian-chong, ZHANG Yong-bin. Investigation on time-dependent deformation of tunnel induced by humidity diffusion[J]. , 2011, 32(S1): 697 -0703 .