›› 2015, Vol. 36 ›› Issue (6): 1591-1597.doi: 10.16285/j.rsm.2015.06.009

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

CT test for evolution of mudstone fractures under compressive load

WANG Chuan-yang1,YANG Chun-he1, 2,HENG Shuai1,MAO Hai-jun1   

  1. 1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 2. State Key Laboratory for Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
  • Received:2014-01-20 Online:2015-06-11 Published:2018-06-14

Abstract: The evolution and spatial distribution of fractures are key factors in the sealability of mudstone caprock. To investigate the evolution of crack initiation, propagation, coalescence during the process of deformation and failure for mudstone, uniaxial compression test and real-time CT scanning have been carried out for mudstone specimens of Longmaxi Formation. The crack evolution under different load levels is discussed; and the relationship between crack evolution and macroscopic deformation is revealed from the mesoscopic scale based on the variations of crack area and fractal characteristics of crack structure. The results show that: the evolution of mudstone cracks can be reflected with the changes of grey frequency and crack area. When the load applied on the specimen is at a level of 0-20%, even though crack area increases rapidly, crack initiation is not active due to the closing effect of cracks in compression process. When the load reaches a level of 20%-65%, crack area changes little owing to the generating effect and closing effect of cracks contributing equally; thus mudstone is in a stable stage. When the load is up to a level of 65%-85%, crack area increases sharply as the uniaxial effect of crack extension and coalescence speeds up. The sudden increase of crack area at the load level of 65% exhibits the burstiness and instantaneity of crack transformation from initiation, closing to extension. The complicated and disordered internal structures and cracks evolving from specimen surface to interior are clearly observed with the further increase of load. The curve of crack fractal dimension appears the “up―down―up―down” trend, which shows the evolution of initiation, closure, extension and coalescence of cracks.

Key words: mudstone, crack evolution, CT scanning, crack area, fractal dimension

CLC Number: 

  • TU 411
[1] PENG Jia-yi, ZHANG Jia-fa, SHEN Zhen-zhong, YE Jia-bing, . Effect of grain shape on pore characteristics and permeability of coarse-grained soil [J]. Rock and Soil Mechanics, 2020, 41(2): 592-600.
[2] SUN Hong, SONG Chun-yu, TENG Mu-wei, GE Xiu-run. Pore evolution characteristics of soft clay under loading [J]. Rock and Soil Mechanics, 2020, 41(1): 141-146.
[3] ZHAO Guo-yan, LI Zhen-yang, WU Hao, WANG En-jie, LIU Lei-lei. Dynamic failure characteristics of sandstone with non-penetrating cracks [J]. Rock and Soil Mechanics, 2019, 40(S1): 73-81.
[4] DU Chang-cheng, ZHU Yan-bo, MIAO Shuai-sheng, GAO Ming-ming, ZHU Jun-hua, ZHAO Fa-suo. The evolution of cracks in the dewatering shrinkage process of hipparion red soil [J]. Rock and Soil Mechanics, 2019, 40(8): 3019-3027.
[5] FU Hong-yuan, LIU Jie, ZENG Ling, BIAN Han-bing, SHI Zhen-ning, . Deformation and strength tests of pre-disintegrating carbonaceous mudstone under loading and soaking condition [J]. Rock and Soil Mechanics, 2019, 40(4): 1273-1280.
[6] ZHANG Xiao-yan, CAI Yan-yan, ZHOU Hao-ran, YANG Yang, LI Yu-long, . Shear behaviors and fractal dimensions of carol sand at large shear strains [J]. Rock and Soil Mechanics, 2019, 40(2): 610-615.
[7] CAI Zheng-yin, ZHU Xun, HUANG Ying-hao, ZHANG Chen. Influences of freeze-thaw process on evolution characteristics of fissures in expensive soils [J]. Rock and Soil Mechanics, 2019, 40(12): 4555-4563.
[8] LI Jing, KONG Xiang-chao, SONG Ming-shui, WANG Yong, WANG Hao, LIU Xu-liang, . Study on the influence of reservoir rock micro-pore structure on rock mechanical properties and crack propagation [J]. Rock and Soil Mechanics, 2019, 40(11): 4149-4156.
[9] XIAO Xiao-chun, FAN Yu-feng, WU Di, DING Xin, WANG Lei, ZHAO Bao-you, . Energy dissipation feature and rock burst risk assessment in coal-rock combinations [J]. Rock and Soil Mechanics, 2019, 40(11): 4203-4212.
[10] ZENG Yin, LIU Jian-feng, ZHOU Zhi-wei, WU Chi, LI Zhi-cheng, . Creep acoustic emission and damage evolution of salt rock under uniaxial compression [J]. Rock and Soil Mechanics, 2019, 40(1): 207-215.
[11] WU Tian-hua, ZHOU Yu, WANG Li, SUN Jin-hai, ZHAO Huan, SUN Zheng, . Mesoscopic study of interaction mechanism between circular hole and fissures in rock under uniaxial compression [J]. Rock and Soil Mechanics, 2018, 39(S2): 463-472.
[12] CHEN Feng, ZHANG Qing-qing, YAO Wei, YE Liang-liang, . Dilation behavior and dilation angle model of salt rock with mudstone [J]. Rock and Soil Mechanics, 2018, 39(S2): 195-201.
[13] ZHANG Yu, WANG Ya-ling, YU Jin, ZHANG Xiao-dong, LUAN Ya-lin,. Creep behavior and its nonlinear creep model of deep gypsum mudstone [J]. , 2018, 39(S1): 105-112.
[14] XIANG Gao, LIU Jian-feng, LI Tian-yi, XU-YANG Meng-di, DENG Chao-fu, WU Chi,. Study of fractal and damage characteristic in the deformation and failure process of salt rack based on acoustic emission [J]. , 2018, 39(8): 2905-2912.
[15] YE Wan-jun, LI Chang-qing, YANG Geng-she, LIU Zhong-xiang, PENG Rui-qi. Scale effects of damage to loess structure under freezing and thawing conditio [J]. , 2018, 39(7): 2336-2343.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Ying-yong,ZHANG Ding-li,ZHANG Hong-bo,SONG Xiu-guang. Research on failure mechanism and effects of prestressed anchor cables for reinforcing slopes[J]. , 2010, 31(1): 144 -150 .
[2] LI Jing,MIAO Lin-chang,ZHONG Jian-chi,FENG Zhao-xiang. Deformation and damping characteristics of EPS beads-mixed lightweight soil under repeated load-unloading[J]. , 2010, 31(6): 1769 -1775 .
[3] LIANG Jian-wei, FANG Ying-guang, GU Ren-guo. Analysis of microelectric field effect of seepage in tiny-particle clay[J]. , 2010, 31(10): 3043 -3050 .
[4] WANG Li-yan,JIANG Peng-ming,LIU Han-long. Mechanism analysis of residual liquefied deformation of breakwater during earthquake[J]. , 2010, 31(11): 3556 -3562 .
[5] LI Xiu-zhen,WANG Cheng-hua,DENG Hong-yan. A comparison of distance and Fisher discrimination methods applied to identifying potential landslides[J]. , 2011, 32(1): 186 -192 .
[6] KONG Xiang-xing, XIA Cai-chu, QIU Yu-liang, ZHANG Li-ying, GONG Jian-wu. Study of construction mechanical behavior of parallel-small spacing metro tunnels excavated by shield method and cross diaphragm (CRD) method in loess region[J]. , 2011, 32(2): 516 -524 .
[7] WANG Zhen-hong,ZHU Yue-ming,WU Quan-huai,ZHANG Yu-hui. Thermal parameters of concrete by test and back analysis[J]. , 2009, 30(6): 1821 -1825 .
[8] JI Wu-jun. Investigation and analysis of engineering problems for loess tunnels[J]. , 2009, 30(S2): 387 -390 .
[9] CHEN Li-hua , LIN Zhi , LI Xing-ping. Study of efficacy of systematic anchor bolts in highway tunnels[J]. , 2011, 32(6): 1843 -1848 .
[10] ZHENG Gang ZHANG Li-ming DIAO Yu. Analysis of working performance of piles beneath excavation bottom and settlement calculation[J]. , 2011, 32(10): 3089 -3096 .