›› 2015, Vol. 36 ›› Issue (8): 2228-2236.doi: 10.16285/j.rsm.2015.08.014

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

A constitutive model of subgrade in a seasonally frozen area with considering freeze-thaw cycles

CUI Hong-huan1, 2, LIU Jian-kun1, 3, ZHANG Li-qun2, TIAN Ya-hu1, 3   

  1. 1. School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China; 2. School of Civil Engineering, Hebei Institute of Architecture and Civil Engineering, Zhangjiakou, Hebei, 075000, China; 3. Qinghai Research and Observation Base, Key Laboratory of Highway Construction & Maintenance Technology in Permafrost Region, Qinghai Research Institute of Transportation, Xining, Qinghai, 810000
  • Received:2014-12-18 Online:2015-08-11 Published:2018-06-13

Abstract: The freeze-thaw cycle tests were conducted on the remoulded soil samples taken from a highway subgrade in a seasonally frozen area. The triaxial compression tests under the consolidated-drained condition were carried out on the remoulded samples subjected to freeze-thaw cycle, and stress-strain data were obtained. Based on the experimental results and the theory of elasto- plasticity, an elliptic equation is proposed to fit the yield surface in the p-q coordinate system, while a parabolic equation is proposed to fit shear yield surface, from which an elastic-plastic constitutive equation was developed following an associated flow rule with considering freeze-thaw cycles. By comparing the theoretical calculation with the experimental data, it is shown that the proposed double-yield surface constitutive model can accurately predict the frozen soil stress-strain relationship. The model provides a theoretical basis for long-term stability analysis and engineering prediction of subgrade soil in seasonally frozen areas.

Key words: constitutive model, freeze-thaw cycle, hardening rules, shear strain, volumetric strain, yield function

CLC Number: 

  • TU 475+.2
[1] JIN Qing, WANG Yi-lin, CUI Xin-zhuang, WANG Cheng-jun, ZHANG Ke, LIU Zheng-yin, . Deformation behaviour of geobelt in weathered rock material-tire shred lightweight soil under pullout condition [J]. Rock and Soil Mechanics, 2020, 41(2): 408-418.
[2] GAO Feng, CAO Shan-peng, XIONG Xin, ZHOU Ke-ping, ZHU Long-yin, . Brittleness evolution characteristics of cyan sandstone under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2020, 41(2): 445-452.
[3] ZHANG Feng-rui, JIANG An-nan, YANG Xiu-rong, SHEN Fa-yi. Experimental and model research on shear creep of granite under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2020, 41(2): 509-519.
[4] DENG Zi-qian, CHEN Jia-shuai, WANG Jian-wei, LIU Xiao-wen, . Constitutive model and experimental study of uniform yield surface based on SFG model [J]. Rock and Soil Mechanics, 2020, 41(2): 527-534.
[5] LI Xiao-xuan, LI Tao, PENG Li-yun, . Elastoplastic two-surface model for unsaturated cohesive soils under cyclic loading with controlled matric suction [J]. Rock and Soil Mechanics, 2020, 41(2): 552-560.
[6] ZHOU Jia-zuo, WEI Chang-fu, WEI Hou-zhen, YANG Zhou-jie, LI Li-xin, LI Yan-long, DING Gen-rong, . Development and application of multi-functional triaxial test system for hydrate-bearing sediments [J]. Rock and Soil Mechanics, 2020, 41(1): 342-352.
[7] HE Peng-fei, MA Wei, MU Yan-hu, HUANG Yong-ting, DONG Jian-hua, . Experimental analysis of interfacial shear behavior of loess-mortar block and construction of constitutive model [J]. Rock and Soil Mechanics, 2019, 40(S1): 82-90.
[8] DOU Jin-zhong, SHAO Xue-ying, LIAO Chen-cong, CHEN Jin-jian, . Study on multi-tamping effects under different arrangement forms of tamping location [J]. Rock and Soil Mechanics, 2019, 40(S1): 527-534.
[9] CHOU Ya-ling, HUANG Shou-yang, SUN Li-yuan, WANG Li-jie, YUE Guo-dong, CAO Wei, SHENG Yu, . Mechanical model of chlorine salinized soil-steel block interface based on freezing and thawing [J]. Rock and Soil Mechanics, 2019, 40(S1): 41-52.
[10] LI Jie-lin, ZHU Long-yin, ZHOU Ke-ping, LIU Han-wen, CAO Shan-peng, . Damage characteristics of sandstone pore structure under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2019, 40(9): 3524-3532.
[11] ZHANG Chao, YANG Qi-jun, CAO Wen-gui, . Study of damage constitutive model of brittle rock considering post-peak stress dropping rate [J]. Rock and Soil Mechanics, 2019, 40(8): 3099-3106.
[12] LIU Si-hong, SHEN Chao-min, MAO Hang-yu, SUN Yi. State-dependent elastoplastic constitutive model for rockfill materials [J]. Rock and Soil Mechanics, 2019, 40(8): 2891-2898.
[13] ZHANG Ling-kai, WANG Rui, ZHANG Jian-min, TANG Xin-jun, . A static and dynamic constitutive model of rockfill material considering particle breakage [J]. Rock and Soil Mechanics, 2019, 40(7): 2547-2554.
[14] WANG Zhen, ZHU Zhen-de, CHEN Hui-guan, ZHU Shu, . A thermo-hydro-mechanical coupled constitutive model for rocks under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2019, 40(7): 2608-2616.
[15] ZHANG Feng, CHEN Guo-xing, WU Qi, ZHOU Zheng-long. Experimental study on undrained behavior of saturated silt subject to wave loading [J]. Rock and Soil Mechanics, 2019, 40(7): 2695-2702.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HUANG Jian-hua,SONG Er-xiang. Research on mechanical properties of frozen curtain in large anchorage foundation pit engineering[J]. , 2009, 30(11): 3372 -3378 .
[2] WANG Zhao-yang, XU Qiang, NI Wan-kui. Study of undisturbed loess stress-strain relation during CT test[J]. , 2010, 31(2): 387 -391 .
[3] WAN Shao-shi, NIAN Ting-kai, JIANG Jing-cai, LUAN Mao-tian. Discussion on several issues in slope stability analysis based on shear strength reduction finite element methods (SSR-FEM)[J]. , 2010, 31(7): 2283 -2288 .
[4] YAN Tie, LI Wei, BI Xue-liang. Research on effective stress model in porous media based on fractal method[J]. , 2010, 31(8): 2625 -2629 .
[5] LIU Jia, WANG Dong. Tension resistance and suction of plate anchor foundation in normally consolidated clay[J]. , 2009, 30(3): 735 -740 .
[6] XU Wei-sheng, CHAI Jun-rui, CHEN Xing-zhou, SUN Xu-shu. Study of nonlinear noncubic seepage in netwok rock and its application[J]. , 2009, 30(S1): 53 -57 .
[7] ZHAO Shang-yi, ZHENG Ying-ren, LI An-hong, QIU Wen-ping, TANG Xiao-song. Application of multi-row embedded anti-slide piles to landslide of Wulong county government[J]. , 2009, 30(S1): 160 -164 .
[8] WEI Hou-zhen, YAN Rong-tao, WEI Chang-fu, WU Er-lin, CHEN Pan, TIAN Hui-hui. Summary of researches for phase-equilibrium of natural gas hydrates in bearing sediments[J]. , 2011, 32(8): 2287 -2294 .
[9] ZHAO Yue-tang, LIN Jia-wei, SHI Lei. Research of spalling under impulse loading[J]. , 2011, 32(S2): 122 -126 .
[10] WANG Guo-cui, YANG Min. Nonlinear analysis of laterally loaded piles in sand[J]. , 2011, 32(S2): 261 -267 .