›› 2015, Vol. 36 ›› Issue (10): 2750-2758.doi: 10.16285/j.rsm.2015.10.002

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Method for calculating the horizontal bearing capacity of segmentally-tapered bucket foundation of offshore wind turbines

LIU Jin-long1, CHEN Lu-wang2, WANG Ji-li3, WANG Dong-lin4   

  1. 1. Department of Civil Engineering, Hefei University, Hefei, Anhui 230601, China; 2. School of Resources and Environmental Engineering, Hefei University of Technology, Hefei , Anhui 230009, China; 3. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 4. School of Civil Engineering, Anhui Jianzhu University, Hefei, Anhui 230601, China
  • Received:2014-05-07 Online:2015-10-10 Published:2018-06-13

Abstract: Because large construction ships cannot enter the shallow sea, traditional configuration foundations, such as gravity-type foundation and pile foundation, are not suited for offshore wind power project in shallow seas. Therefore, a new type of foundation—segmentally-tapered bucket foundation is proposed. Based on the limit equilibrium method, a systematic method is proposed to calculate the horizontal bearing capacity of the segmentally-tapered bucket foundation. The influences of obliquity of wall, foundation height, top diameter of bucket and soil parameters on the horizontal bearing capacity of the segmentally-tapered bucket foundation are analyzed. It is found that the horizontal bearing capacity increases with the increase of the wall obliquity, soil resistance, top diameter of bucket and foundation height, while decreases with the increase of the depth of seabed. Based on the concept of volume compression ratio, the bucket foundation with inclined upper section wall and vertical lower section wall is recommended and demonstrated. An accurate method is proposed to determine the proportional coefficient of soil resistance. The results are helpful in the optimization design of traditional bucket foundation.

Key words: offshore wind turbine, segmentally-tapered bucket foundation, horizontal bearing capacity, limit equilibrium method, volume compression ratio

CLC Number: 

  • P 754
[1] ZHANG Hai-na, CHEN Cong-xin, ZHENG Yun, SUN Chao-yi, ZHANG Ya-peng, LIU Xiu-min, . Analysis of flexural toppling failure of rock slopes subjected to the load applied on the top [J]. Rock and Soil Mechanics, 2019, 40(8): 2938-2946.
[2] WU Xiao-feng, ZHU Bin, WANG Yu-bing, . Dynamic model test on monopile for offshore wind turbine under jointed lateral environmental load and seismic load [J]. Rock and Soil Mechanics, 2019, 40(10): 3937-3944.
[3] LI Hong-jiang, TONG Li-yuan, LIU Song-yu, BAO Hong-yan, YANG Tao, . Parameter sensitivity of horizontal bearing capacity of large diameter and super-long bored pile [J]. , 2018, 39(5): 1825-1833.
[4] YAN Shu-wang, LI Jia, YAN Yue, CHEN Hao,. Research on stable limit depth of vertical cylinder hole in cohesive soil ground [J]. , 2018, 39(4): 1176-1181.
[5] QI Yue, LIU Run, LIAN Ji-jian,. Model test of bucket foundation suction installation in cohesionless soil [J]. , 2018, 39(1): 139-150.
[6] YANG Ming-hui, DAI Xia-bin, ZHAO Ming-hua, LUO Hong. Calculation of active earth pressure for limited soils with curved sliding surface [J]. , 2017, 38(7): 2029-2035.
[7] LIU Zhen-ping, YANG Bo, LIU Jian, HE Huai-jian,. Three-dimensional limit equilibrium method based on GRASS GIS and TIN sliding surface [J]. , 2017, 38(1): 221-228.
[8] ZHOU Yang-yi, FENG Xia-ting, XU Ding-ping, HE Ming-wu,. A simplified analysis method of block stability in large underground powerhouse [J]. , 2016, 37(8): 2391-2398.
[9] YU Jian ,HUANG Mao-song ,ZHANG Chen-rong , . Model tests and analysis of single piles with two different diameters subjected to cyclic lateral loadings in clay [J]. , 2016, 37(4): 973-980.
[10] LIAN Ji-jian, HE Wei, WU Mu-dan, WANG Hai-jun. Experimental study of bearing characteristic of bucket foundation of offshore wind turbine with bulkheads [J]. , 2016, 37(10): 2746-2752.
[11] SHI Feng , HAO Shi-long , . Field test for horizontal bearing capacity of PHC pipe piles [J]. , 2015, 36(S2): 617-622.
[12] LIU Shuan-qi , LU Kun-lin , ZHU Da-yong , WU Ying-lei , GAN Wen-ning , . A method for calculating the ultimate bearing capacity of a strip footing on the reinforced sand [J]. , 2015, 36(8): 2307-2314.
[13] BAI Bing , YUAN Wei , SHI Lu , LI Jun , LI Xiao-chun,. Comparing a new double reduction method to classic strength reduction method for slope stability analysis [J]. , 2015, 36(5): 1275-1281.
[14] LIU Hua-li , LI Hong-wei , ZHU Da-yong,. A method for calculation of anchor force in slope reinforcement [J]. , 2015, 36(2): 509-514.
[15] WANG Lei , GUO Chao , MU Bao-gang , GONG Wei-ming , SUN Zhen-wei,. Experimental research on horizontal bearing behavior of caisson-pile composite foundation [J]. , 2015, 36(11): 3150-3156.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .
[2] GONG Wei-li, AN Li-qian, ZHAO Hai-yan, MAO Ling-tao. Multiple scale characterization of CT image for coal rock fractures based on image description[J]. , 2010, 31(2): 371 -376 .
[3] WAN Zhi, DONG Hui, LIU Bao-chen. On choice of hyper-parameters of support vector machines for time series regression and prediction with orthogonal design[J]. , 2010, 31(2): 503 -508 .
[4] WANG Ming-nian, GUO Jun, LUO Lu-sen, Yu Yu, Yang Jian-min, Tan Zhon. Study of critical buried depth of large cross-section loess tunnel for high speed railway[J]. , 2010, 31(4): 1157 -1162 .
[5] HU Yong-gang, LUO Qiang, ZHANG Liang, HUANG Jing, CHEN Ya-mei. Deformation characteristics analysis of slope soft soil foundation treatment with mixed-in-place pile by centrifugal model tests[J]. , 2010, 31(7): 2207 -2213 .
[6] TAN Feng-yi, Jiang Zhi-quan, Li Zhong-qiu, YAN Hui-he. Application of additive mass method to testing compacted density of filling material in Kunming new airport[J]. , 2010, 31(7): 2214 -2218 .
[7] CHAI Bo, YIN Kun-long, XIAO Yong-jun. Characteristics of weak-soft zones of Three Gorges Reservoir shoreline slope in new Badong county[J]. , 2010, 31(8): 2501 -2506 .
[8] WANG Xue-wu,XU Shang-jie,DANG Fa-ning,CHENG Su-zhen. Analysis of stability of dam slope during rapid drawdown of reservoir water level[J]. , 2010, 31(9): 2760 -2764 .
[9] WANG Wei-ming, SUN Rui, CAO Zhen-zhong, YUAN Xiao-ming. Comparative study of features of liquefied sites at home and abroad[J]. , 2010, 31(12): 3913 -3918 .
[10] YANG Zhao-liang, SUN Guan-hua, ZHENG Hong. Global method for stability analysis of slopes based on Pan’s maximum principle[J]. , 2011, 32(2): 559 -563 .