›› 2015, Vol. 36 ›› Issue (12): 3456-3464.doi: 10.16285/j.rsm.2015.12.016

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Review of advances in investigation of representative elementary volume and scale effect of fractured rock masses

WANG Xiao-ming1, 2, ZHENG Yin-he3   

  1. 1. Hebei Provincial Communications Planning and Design Institute, Shijiazhuang, Hebei 050011, China; 2. School of Civil Engineering, Hebei University of Technology, Tianjin 300401, China; 3. School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
  • Received:2014-05-06 Online:2015-12-11 Published:2018-06-14
  • Supported by:

    Project supported by the National Natural Science Foundation of China (Grant No. 41272387).

Abstract: Since the concept of representative elementary volume (REV) of fractured rock masses is fundamental and significant in rock mechanics, it is worth studying by researchers. This paper critically reviews the latest research achievements in the field of REV of fractured rock masses. Three main aspects are discussed, which are research viewpoints and its relevant parameters, research approaches and quantitative methods. Firstly, from the point view of studying REV, the geometrical parameters of discontinuities and rock blocks, the mechanical and hydraulic parameters of rock masses are investigated in detail. Secondly, the applied conditions, merits and drawbacks of research approaches are briefly introduced, including statistical, analytical and numerical methods. Finally, the quantitative methods for determination of REV, i.e., intuitive judgment, error and coefficient of variation prediction, hypothesis tests, curve fitting and grey correlation analysis, are summarized. This paper provides reference and guidance for relevant studies.

Key words: rock mechanics, fractured rock mass, representative elementary volume, scale effect, equivalent parameters

CLC Number: 

  • TU 452
[1] ZHANG Yan-bo, SUN Lin, YAO Xu-long, LIANG Peng, TIAN Bao-zhu, LIU Xiang-xin, . Experimental study of time-frequency characteristics of acoustic emission key signals during granite fracture [J]. Rock and Soil Mechanics, 2020, 41(1): 157-165.
[2] XIAO Yao, DENG Hua-feng, LI Jian-lin, ZHI Yong-yan, XIONG Yu. The deterioration effect of fractured rock mass strengthened by grouting method under long-term immersion [J]. Rock and Soil Mechanics, 2019, 40(S1): 143-151.
[3] ZHI Yong-yan, DENG Hua-feng, XIAO Yao, DUAN Ling-ling, CAI Jia, LI Jian-lin. Analysis of seepage characteristics of fractured rock mass reinforced by microbial grouting [J]. Rock and Soil Mechanics, 2019, 40(S1): 237-244.
[4] SEISUKE Okubo, TANG Yang, XU Jiang, PENG Shou-jian, CHEN Can-can, YAN Zhao-song, . Application of 3D-DIC system in rock mechanic test [J]. Rock and Soil Mechanics, 2019, 40(8): 3263-3273.
[5] MA Qiu-feng, QIN Yue-ping, ZHOU Tian-bai, YANG Xiao-bin. Mechanical properties and constitutive model of porous rock under loading and unloading [J]. Rock and Soil Mechanics, 2019, 40(7): 2673-2685.
[6] TIAN Jun, LU Gao-ming, FENG Xia-ting, LI Yuan-hui, ZHANG Xi-wei. Experimental study of the microwave sensitivity of main rock-forming minerals [J]. Rock and Soil Mechanics, 2019, 40(6): 2066-2074.
[7] JIN Jun-chao, SHE Cheng-xue, SHANG Peng-yang. A nonlinear creep model of rock based on the strain softening index [J]. Rock and Soil Mechanics, 2019, 40(6): 2239-2246.
[8] SU Guo-shao, YAN Si-zhou, YAN Zhao-fu, ZHAI Shao-bin, YAN Liu-bin, . Evolution characteristics of acoustic emission in rockburst process under true-triaxial loading conditions [J]. Rock and Soil Mechanics, 2019, 40(5): 1673-1682.
[9] WANG Yu, AI Qian, LI Jian-lin, DENG Hua-feng, . Damage characteristics of sandstone under different influence factors and its unloading failure meso-morphology properties [J]. Rock and Soil Mechanics, 2019, 40(4): 1341-1350.
[10] LI Xiao-zhao, QI Cheng-zhi, SHAO Zhu-shan, QU Xiao-lei, . Micromechanics-based model study of shear properties of brittle rocks [J]. Rock and Soil Mechanics, 2019, 40(4): 1358-1367.
[11] CHEN Wei-zhong, LI Fan-fan, MA Yong-shang, LEI Jiang, YU Hong-dan, XING Tian-hai, ZHENG You-lei, JIA Xiao-dong, . Development of a parallel-linkage triaxial testing machine for THM coupling in soft rock [J]. Rock and Soil Mechanics, 2019, 40(3): 1213-1220.
[12] ZHENG Guang-hui, XU Jin-yu, WANG Peng, FANG Xin-yu, WANG Pei-xi, WEN Ming, . Physical characteristics and degradation model of stratified sandstone under freeze-thaw cycling [J]. Rock and Soil Mechanics, 2019, 40(2): 632-641.
[13] LI Wei, WANG Zhe-chao, BI Li-ping, LIU Jie, . Representative elementary volume size for permeable property and equivalent permeability of fractured rock mass in radial flow configuration [J]. Rock and Soil Mechanics, 2019, 40(2): 720-727.
[14] LI Xiao-zhao, SHAO Zhu-shan, QI Cheng-zhi, . Study on rock crack damage and confining pressure effects on shear fracture band [J]. Rock and Soil Mechanics, 2019, 40(11): 4249-4258.
[15] JIN Jun-chao, SHE Cheng-xue, SHANG Peng-yang. Study on strength parameters and dilation angle evolution models in hard rock elasto-plastic deformation and failure process [J]. Rock and Soil Mechanics, 2019, 40(11): 4401-4411.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WEI Li,CHAI Shou-xi,CAI Hong-zhou,WANG Xiao-yan,LI Min3,SHI Qian. Research on tensility of wheat straw for reinforced material[J]. , 2010, 31(1): 128 -132 .
[2] HUANG Qing-xiang, ZHANG Pei, DONG Ai-ju. Mathematical model of “arch beam” of thick sandy soil layer movement in shallow seam[J]. , 2009, 30(9): 2722 -2726 .
[3] JING Zhi-dong, LIU Jun-xin. Experimental research on dynamic deformations of semi-rigid structures of subgrade bed-mudstone of red beds[J]. , 2010, 31(7): 2116 -2121 .
[4] LIU Zheng-hong,LIAO Yan-hong,ZHANG Yu-shou. Preliminary study of physico-mechanical properties of Luanda sand[J]. , 2010, 31(S1): 121 -126 .
[5] LEI Jin-bo,CHEN Cong-xin. Research on load transfer mechanism of composite foundation of rigid pile with cap based on hyperbolic model[J]. , 2010, 31(11): 3385 -3391 .
[6] WANG Deng-ke,LIU Jian,YIN Guang-zhi,WEI Li-de. Research on influencing factors of permeability change for outburst-prone coal[J]. , 2010, 31(11): 3469 -3474 .
[7] FAN Heng-hui, GAO Jian-en, WU Pu-te, LUO Zong-ke. Physicochemical actions of stabilized soil with cement-based soil stabilizer[J]. , 2010, 31(12): 3741 -3745 .
[8] ZHANG Cheng-ping,ZHANG Ding-li,LUO Jian-jun,WANG Meng-shu,WU Jie-pu. Remote monitoring system applied to the construction of metro station undercrossing existing metro tunnel[J]. , 2009, 30(6): 1861 -1866 .
[9] WANG Jun, CAO Ping, LI Jiang-teng, LIU Ye-ke. Analysis of stability of tunnel-slope with rheological medium under rainfall infiltration[J]. , 2009, 30(7): 2158 -2162 .
[10] TANG Shi-bin, TANG Chun-an, LI Lian-chong, ZHANG Yong-bin. Investigation on time-dependent deformation of tunnel induced by humidity diffusion[J]. , 2011, 32(S1): 697 -0703 .