›› 2015, Vol. 36 ›› Issue (12): 3500-3505.doi: 10.16285/j.rsm.2015.12.021

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Normalized stress-strain behavior of silty sand under freeze-thaw cycles

CHANG Dan1, LIU Jian-kun1, LI Xu1, 2   

  1. 1. School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China; 2. Transportation Industry Laboratory of Highway Construction and Maintenance Technology in Permafrost Regions-Qinghai Research Observation Base, Qinghai Research Institute of Transportation, Xining, Qinghai 810000, China
  • Received:2014-05-13 Online:2015-12-11 Published:2018-06-14
  • Supported by:

    Project supported by the National Program on Key Basic Research Project of China (973 Program) (Grant No. 2012CB026104) and National Natural Science Foundation of China (Grant Nos. 51378057 and 41371081)。

Abstract: The unconsolidated undrained triaxial shear tests are carried out to explore the stress-strain relationship behaviors of unfrozen silty sand under different freeze-thaw cycles. Based on the test results, when the confining pressure is low, both the unfrozen silty sand or the silty sand experiencing fewer freeze-thaw cycles exhibits weak strain softening phenomenon; And stain of silty sand will change from weak stain softening to stain hardening after experiencing a certain number of freeze-thaw cycles. No matter the unfrozen silty or the frozen silty shows strain hardening under a higher confining pressure level, their stress-strain curves are both the typical hyperbola. and the normalization of the stress-strain relationship is vital to study the stress-strain properties. In this paper, four kinds of common normalization factors, which are widely adopted for unfrozen soil to study stress-strain characteristics as well as the corresponding normalized conditions, are introduced. Based on the normalization factors above, a new normalized factor is proposed to analyze the stress-strain relation of soils under freeze-thaw cycles and the normalized conditions are defined. A new normalized stress-strain equation is established to predict the stress-strain curve of silty sand under freeze-thaw cycles and confining pressures. Comparison of the prediction and test results shows that the established predict model can consider the influences of freeze-thaw cycles and has better fitting and prediction accuracy.

Key words: freeze-thaw cycle, silty sand, stress-strain relationship, strain hardening, normalized factor

CLC Number: 

  • TU 431
[1] GAO Feng, CAO Shan-peng, XIONG Xin, ZHOU Ke-ping, ZHU Long-yin, . Brittleness evolution characteristics of cyan sandstone under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2020, 41(2): 445-452.
[2] ZHANG Feng-rui, JIANG An-nan, YANG Xiu-rong, SHEN Fa-yi. Experimental and model research on shear creep of granite under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2020, 41(2): 509-519.
[3] CHOU Ya-ling, HUANG Shou-yang, SUN Li-yuan, WANG Li-jie, YUE Guo-dong, CAO Wei, SHENG Yu, . Mechanical model of chlorine salinized soil-steel block interface based on freezing and thawing [J]. Rock and Soil Mechanics, 2019, 40(S1): 41-52.
[4] LI Jie-lin, ZHU Long-yin, ZHOU Ke-ping, LIU Han-wen, CAO Shan-peng, . Damage characteristics of sandstone pore structure under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2019, 40(9): 3524-3532.
[5] WANG Zhen, ZHU Zhen-de, CHEN Hui-guan, ZHU Shu, . A thermo-hydro-mechanical coupled constitutive model for rocks under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2019, 40(7): 2608-2616.
[6] MA Qiu-feng, QIN Yue-ping, ZHOU Tian-bai, YANG Xiao-bin. Mechanical properties and constitutive model of porous rock under loading and unloading [J]. Rock and Soil Mechanics, 2019, 40(7): 2673-2685.
[7] MO Zhen-ze, WANG Meng-shu, LI Hai-bo, QIAN Yong-jin, LUO Gen-dong, WANG Hui, . Laboratory investigation on pore water pressure variation caused by filter cake effect during slurry-EPB shield tunneling in silty sand layer [J]. Rock and Soil Mechanics, 2019, 40(6): 2257-2263.
[8] GAO Feng, XIONG Xin, ZHOU Ke-ping, LI Jie-lin, SHI Wen-chao, . Strength deterioration model of saturated sandstone under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2019, 40(3): 926-932.
[9] HU Tian-fei, LIU Jian-kun, WANG Tian-liang, YUE Zu-run, . Effect of freeze-thaw cycles on deformation characteristics of a silty clay and its constitutive model with double yield surfaces [J]. Rock and Soil Mechanics, 2019, 40(3): 987-997.
[10] TAN Guo-hong, XIAO Hai-zhu, DU Xun, HU Wen-jun. Settlement analysis of caisson foundation under main tower of a long span cable-stayed bridge for highway and railway [J]. Rock and Soil Mechanics, 2019, 40(3): 1113-1120.
[11] ZHENG Guang-hui, XU Jin-yu, WANG Peng, FANG Xin-yu, WANG Pei-xi, WEN Ming, . Physical characteristics and degradation model of stratified sandstone under freeze-thaw cycling [J]. Rock and Soil Mechanics, 2019, 40(2): 632-641.
[12] DONG Jian-xun, LIU Hai-xiao, LI Zhou. A bounding surface plasticity model of sand for cyclic loading analysis [J]. Rock and Soil Mechanics, 2019, 40(2): 684-692.
[13] YU Jin, ZHANG Xin, CAI Yan-yan, LIU Shi-yu, TU Bing-xiong, FU Guo-feng, . Meso-damage and mechanical properties degradation of sandstone under combined effect of water chemical corrosion and freeze-thaw cycles [J]. Rock and Soil Mechanics, 2019, 40(2): 455-464.
[14] GU Jian-xiao, YANG Jun-yan, WANG Yong, LÜ Hai-bo, . Simulation of carbonate sand with triaxial tests data based on modified model of South water double yield surface [J]. Rock and Soil Mechanics, 2019, 40(12): 4597-4606.
[15] JI En-yue, CHEN Sheng-shui, FU Zhong-zhi, . Experimental investigations on tensile cracking mechanical characteristics of gravelly core material [J]. Rock and Soil Mechanics, 2019, 40(12): 4777-4782.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YANG Guang, SUN Xun, YU Yu-zhen, ZHANG Bing-yin. Experimental study of mechanical behavior of a coarse-grained material under various stress paths[J]. , 2010, 31(4): 1118 -1122 .
[2] WEN Shi-qiang, CHEN Yu-min, DING Xuan-ming, ZUO Wei-long. Application of grouted gravel pile in soft subgrade improvement of expressway[J]. , 2010, 31(5): 1559 -1563 .
[3] ZHANG Chang-guang,ZHANG Qing-he,ZHAO Jun-hai. Unified solutions of shear strength and earth pressure for unsaturated soils[J]. , 2010, 31(6): 1871 -1876 .
[4] YANG Tian-hong, CHEN Shi-kuo, ZHU Wan-cheng, LIU Hong-lei. Coupled model of gas-solid in coal seams based on dynamic process of pressure relief and gas drainage[J]. , 2010, 31(7): 2247 -2252 .
[5] HU Xiu-hong,WU Fa-quan. Research on two-parameter negative exponential distribution of discontinuity spacings in rock mass[J]. , 2009, 30(8): 2353 -2358 .
[6] WANG Wei LI Xiao-chun LI Qiang SHI Lu WANG Ying BAI Bing. Small size in-situ transient pulse permeability measurement system and its experimental research[J]. , 2011, 32(10): 3185 -3189 .
[7] LI Shu-cai , ZHAO Yan , XU Bang-shu , LI Li-ping , LIU Qin , WANG Yu-kui . Study of determining permeability coefficient in water inrush numerical calculation of subsea tunnel[J]. , 2012, 33(5): 1497 -1504 .
[8] WANG Hong-xin , SUN Yu-yong . Test study and bar system FEM for foundation pits considering excavation width[J]. , 2012, 33(9): 2781 -2787 .
[9] LIU Fei-yu , YU Wei , CAI Yuan-qiang , ZHANG Meng-xi . Model test and numerical analysis of geogrid-reinforced pile-supported foundation[J]. , 2012, 33(S1): 244 -250 .
[10] CHEN Zhi-jian ,CHEN Xin-di ,TANG Yong ,ZHANG Ning-ning . Sensor protection techniques of super-large deep-water pile group foundation[J]. , 2012, 33(11): 3509 -3515 .