›› 2015, Vol. 36 ›› Issue (S1): 85-93.doi: 10.16285/j.rsm.2015.S1.015

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

A return-mapping algorithm and implementation of thermodynamics-based critical state model

SUN Xiang1, 2, GUO Xiao-xia1, 2, SHAO Long-tan1, 2   

  1. 1. State Key Laboratory of Structural Analysis of Industrial Equipment, Dalian University of Technology, Dalian, Liaoning 116085, China; 2. Department of Engineering Mechanics, Dalian University of Technology, Dalian, Liaoning 116085, China
  • Received:2015-03-13 Online:2015-07-11 Published:2018-06-14

Abstract: Comparing to the other critical state model, the thermodynamics-based critical state (TCS) model can meet principle of the thermodynamics without introduction of plastic potential function. This model can be used to model the influence of K0 consolidation by modification of it. The return-mapping algorithm is utilized to conduct the redevelopment of TCS model in ABAQUS. The certification of this model can be given by the comparison with modified Cam-Clay (MCC) model offered by ABAQUS. Otherwise, the variation of the yield surface shape controlled by two parameters is discussed. The influence of these two parameters on the stress-strain relationship and dilatancy is also analyzed. The modification of parameter in TCS model can be used to describe non-ellipse yield surface extending available range of TCS model. Different parameters have different influences on the shape and size of yield surface. Meanwhile, it is shown that the stress-strain relationship and dilatancy are different between described by TCS model where the K0 consolidation and stress rotational hardening are considered and described by MCC model without consideration of them are shown. For the real soils, K0 consolidation and rotational hardening are basic mechanical properties of soils. This paper demonstrates that TCS model can be used to describe these features of soils compared with MCC model where the rotational hardening and K0 consolidation are not considered. So, it is more available.

Key words: critical state, stress-strain relationship, dilatancy, yield surface, thermodynamics

CLC Number: 

  • O 414.1
[1] WANG Zhi-chao, PENG Yi-qin, QIN Yun, TIAN Ying-hui, LUO Guang-cai, . Stress-induced anisotropic subloading surface model for overconsolidated soil based on unified yield criterion [J]. Rock and Soil Mechanics, 2023, 44(7): 1891-1900.
[2] ZHI Bin, WANG Xiao-chan, LIU En-long, . Influence of particle shape on the particle crushing law and strength criterion for granular materials [J]. Rock and Soil Mechanics, 2023, 44(3): 649-662.
[3] ZHAO Kai, SHAO Shuai, SHAO Sheng-jun, WEI Jun-zheng, ZHANG Shao-ying, ZHANG Yu, . Study on shear bands of undisturbed loess under plane strain [J]. Rock and Soil Mechanics, 2023, 44(2): 433-441.
[4] ZHAO Shun-li, YANG Zhi-jun, FU Xu-dong, FANG Zheng, . Shear damage mechanism of coarse-grained materials considering strain localization [J]. Rock and Soil Mechanics, 2023, 44(1): 31-42.
[5] JIANG Chang-bao, YU Tang, WEI Wen-hui, DUAN Min-ke, YANG Yang, WEI Cai, . Permeability evolution model of coal under loading and unloading stresses [J]. Rock and Soil Mechanics, 2022, 43(S1): 13-22.
[6] LIU Yan-jing, WANG Lu-jun, ZHU Bin, CHEN Yun-min, . An elastoplastic constitutive model for hydrate-bearing sediments considering the effects of filling and bonding [J]. Rock and Soil Mechanics, 2022, 43(9): 2471-2482.
[7] ZHANG Shu-ming, JIANG Guan-lu, YE Xiong-wei, CAI Jun-feng, YUAN Sheng-yang, LUO Bin, . A constitutive model for frozen silty sand based on binary medium model simplified by breakage parameter [J]. Rock and Soil Mechanics, 2022, 43(7): 1854-1864.
[8] HOU Le-le, WENG Xiao-lin, LI Lin, ZHOU Rong-ming, . A critical state model for structural loess considering water content [J]. Rock and Soil Mechanics, 2022, 43(3): 737-748.
[9] XU Long-fei, WENG Xiao-lin, ZHANG Ai-jun, ZHAO Gao-wen, WONG Henry, FABBRI Antonin, . Experimental study of water retention characteristics and vapor migration of earth material under relative humidity variation [J]. Rock and Soil Mechanics, 2021, 42(9): 2489-2498.
[10] CAO Shuo, YU Yong, WANG Bo, . Viscoelasto-viscoplastic solutions for circular tunnel based on D-P yield criterion and Nishihara model [J]. Rock and Soil Mechanics, 2021, 42(7): 1925-1932.
[11] CHEN Xiao-bin, YANG Ning-yu, ZHU Yu, ZHANG Jun-qi, QIAO Shi-fan, . Investigation on stress-strain relationship of TDA-graded aggregate mixtures in large-scale triaxial test [J]. Rock and Soil Mechanics, 2021, 42(4): 921-931.
[12] YANG Ai-wu, XU Cai-li, LANG Rui-qing, WANG Tao, . Three-dimensional mechanical properties and failure criterion of municipal solidified sludge under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2021, 42(4): 963-975.
[13] WANG Li, LI Gao, CHEN Yong, TAN Jian-min, WANG Shi-mei, GUO Fei, . Field model test on failure mechanism of artificial cut-slope rainfall in Southern Jiangxi [J]. Rock and Soil Mechanics, 2021, 42(3): 846-854.
[14] ZHENG Hong, ZHANG Tan, WANG Qiu-sheng. One package of schemes for some difficult issues in finite element plasticity analysis [J]. Rock and Soil Mechanics, 2021, 42(2): 301-314.
[15] YU Jin, LIU Ze-han, LIN Li-hua, HUANG Jian-guo, REN Wen-bin, ZHOU Lei, . Characteristics of dilatancy of marble under variable amplitude cyclic loading and unloading [J]. Rock and Soil Mechanics, 2021, 42(11): 2934-2942.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Kui, GAO Bo. Study of construction schemes for metro tunnel crossing river and bridge[J]. , 2010, 31(5): 1509 -1516 .
[2] YANG Bing, YANG Jun, CHANG Zai, GAN Hou-yi, SONG Er-xiang. 3-D granular simulation for compressibility of soil-aggregate mixture[J]. , 2010, 31(5): 1645 -1650 .
[3] XIAO Shi-guo,XIAN Fei,WANG Huan-long. 一种微型桩组合抗滑结构内力分析方法[J]. , 2010, 31(8): 2553 -2559 .
[4] YE Hai-lin, ZHENG Ying-ren, HUANG Run-qiu, DU Xiu-li, LI An-hong4, XU Jiang-bo. Study of application of strength reduction dynamic analysis method to aseismic design of anti-slide piles for landslide[J]. , 2010, 31(S1): 317 -323 .
[5] ZHANG Zhi-pei, PENG Hui, RAO Xiao. Numerical simulation study of grouting diffusion process in soft soil foundation[J]. , 2011, 32(S1): 652 -0655 .
[6] WU Li-zhou , ZHANG Li-min , HUANG Run-qiu. Analytic solution to coupled seepage in layered unsaturated soils[J]. , 2011, 32(8): 2391 -2396 .
[7] LIU Run , WANG Xiu-yan , LIU Yue-hui , WANG Wu-gang. Thermal buckling analysis of submarine buried pipelines with isolated prop initial imperfection[J]. , 2011, 32(S2): 64 -69 .
[8] LIANG Yao-zhe. Analysis of active earth pressure of rigid pile composite foundation[J]. , 2012, 33(S1): 25 -29 .
[9] HAN Jian-xin , LI Shu-cai , LI Shu-chen , YANG Wei-min , WANG Lei . Study of post-peak stress-strain relationship of rock material based on evolution of strength parameters[J]. , 2013, 34(2): 342 -346 .
[10] HUANG Da , CEN Duo-feng , HUANG Run-qiu . Influence of medium strain rate on sandstone with a single pre-crack under uniaxial compression using PFC simulation[J]. , 2013, 34(2): 535 -545 .