›› 2015, Vol. 36 ›› Issue (S1): 417-422.doi: 10.16285/j.rsm.2015.S1.073

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Effects of gradation scale method on maximum dry density of coarse-grained soil

ZUO Yong-zhen, ZHANG Wei, PAN Jia-jun, ZHAO Na   

  1. Key Laboratory of Geotechnical Mechanics and Engineering of Ministry of Water Resources, Yangtze River Scientific Research Institute, Wuhan, Hubei 430010, China
  • Received:2015-05-06 Online:2015-07-11 Published:2018-06-14

Abstract: There are about 4 methods, i.e. scalping method, equivalent substitution method, similar gradation method and hybrid method, to model the site gradation of soil materials according to the code. And 15 modeling gradations of coarse-grained materials from an engineering site have been modeled by using these gradation scale methods; by the same token, their equivalent particle diameters are 60, 40, 20 mm. The maximum dry density tests also have been conducted to these modeling gradations in the same vibration energy; and the distributing law of maximum dry density value can be concluded. In conclusion, the maximum dry density value goes together with the nonuniform coefficient, curvature coefficient, maximum particle diameter and lower groups (≤5 mm), etc. And a corrected gradation parameter has been put forward to normalize the relationship between maximum dry density and relative parameters of gradation. To justify the rationality of normalized formula, the site coarse-grained materials compaction tests have been conducted with the sample diameter of 1 m.

Key words: scale effect, gradation scale method, coarse-grained soil, maximum dry density, gradation parameter

CLC Number: 

  • TU 521.2
[1] WU Er-lu, ZHU Jun-gao, GUO Wan-li, LU Yang-yang, . Experimental study of compaction characteristics of coarse-grained soil based on gradation equation [J]. Rock and Soil Mechanics, 2020, 41(1): 214-220.
[2] DING Jian-yuan, CHEN Xiao-bin, ZHANG Jia-sheng, LIU Yi-yin, XIAO Yuan-jie, . Predicting model for coarse-grained soil particle breakage process using logarithmic probability regression mathematic method [J]. Rock and Soil Mechanics, 2019, 40(4): 1465-1473.
[3] GUO Wan-li, ZHU Jun-gao, QIAN Bin, ZHANG Dan, . Particle breakage evolution model of coarse-grained soil and its experimental verification [J]. Rock and Soil Mechanics, 2019, 40(3): 1023-1029.
[4] GUO Wan-li, CAI Zheng-yin, WU Ying-li, HUANG Ying-hao. Study on the particle breakage energy and dilatancy of coarse-grained soils [J]. Rock and Soil Mechanics, 2019, 40(12): 4703-4710.
[5] GUO Wan-li, ZHU Jun-gao, YU Ting, JIN Wei,. Application of gradation equation for coarse-grained soil [J]. , 2018, 39(10): 3661-3667.
[6] LIU Xin-rong, WANG Zi-juan, FU Yan, YUAN Wen, DEN Zhi-yun, . Research on nondestructive testing parameters’ scale effect of sandstone of different moisture contents [J]. , 2016, 37(S1): 192-200.
[7] WU Li-qiang, ZHU Sheng, ZHANG Xiao-hua, CHEN Wen-liang,. Analysis of scale effect of coarse-grained materials [J]. , 2016, 37(8): 2187-2197.
[8] LENG Wu-ming , ZHOU Wen-quan , NIE Ru-song , ZHAO Chun-yan , LIU Wen-jie , YANG Qi,. Analysis of dynamic characteristics and accumulative deformation of coarse-grained soil filling of heavy-haul railway [J]. , 2016, 37(3): 728-736.
[9] ZHOU Wen-quan , LENG Wu-ming , LIU Wen-jie , NIE Ru-song , . Dynamic behavior and backbone curve model of saturated coarse-grained soil under cyclic loading and low confining pressure [J]. , 2016, 37(2): 415-423.
[10] ZHAO Na, ZUO Yong-zhen, WANG Zhan-bin, YU Sheng-guan. Grading scale method for coarse-grained soils based on fractal theory [J]. , 2016, 37(12): 3513-3519.
[11] HUANG Da , ZENG Bin , GU Dong-ming,. Estimation of critical hydraulic gradient of coarse-grained soils based on Copula theory [J]. , 2015, 36(5): 1253-1260.
[12] XU Han, CHENG Zhan-lin, TAI Pei, PAN Jia-jun, HUANG Bin. Centrifuge model test and numerical simulation of coarse-grained soil [J]. , 2015, 36(5): 1322-1327.
[13] ZHAO Ting-ting ,ZHOU Wei ,CHANG Xiao-lin ,MA Gang ,MA Xing,. Fractal characteristics and scaling effect of the scaling method for rockfill materials [J]. , 2015, 36(4): 1093-1101.
[14] LENG Wu-ming ,LIU Wen-jie ,ZHAO Chun-yan ,ZHOU Wen-quan ,YANG Qi , . Experimental research on dynamic failure rules of compacted coarse-grained soil filling in heavy haul railway subgrade [J]. , 2015, 36(3): 640-646.
[15] CHEN Ren-peng, WU Jin, QI Shuai, WANG Han-lin,. A method for measuring hydraulic parameters of coarse-grained soils for high-speed railway subgrade [J]. , 2015, 36(12): 3365-3372.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Ying-yong,ZHANG Ding-li,ZHANG Hong-bo,SONG Xiu-guang. Research on failure mechanism and effects of prestressed anchor cables for reinforcing slopes[J]. , 2010, 31(1): 144 -150 .
[2] LIANG Jian-wei, FANG Ying-guang, GU Ren-guo. Analysis of microelectric field effect of seepage in tiny-particle clay[J]. , 2010, 31(10): 3043 -3050 .
[3] WANG Li-yan,JIANG Peng-ming,LIU Han-long. Mechanism analysis of residual liquefied deformation of breakwater during earthquake[J]. , 2010, 31(11): 3556 -3562 .
[4] LI Xiu-zhen,WANG Cheng-hua,DENG Hong-yan. A comparison of distance and Fisher discrimination methods applied to identifying potential landslides[J]. , 2011, 32(1): 186 -192 .
[5] JI Wu-jun. Investigation and analysis of engineering problems for loess tunnels[J]. , 2009, 30(S2): 387 -390 .
[6] CHEN Li-hua , LIN Zhi , LI Xing-ping. Study of efficacy of systematic anchor bolts in highway tunnels[J]. , 2011, 32(6): 1843 -1848 .
[7] CHEN Li-wen, SUN De-an. Bifurcation analysis of overconsolidated clays with soil-water coupling along different stress paths[J]. , 2011, 32(10): 2922 -2928 .
[8] ZHENG Gang ZHANG Li-ming DIAO Yu. Analysis of working performance of piles beneath excavation bottom and settlement calculation[J]. , 2011, 32(10): 3089 -3096 .
[9] ZHAO Ming-hua, LEI Yong, ZHANG Rui. Study of punching failure mode and safe thickness of pile foundation in karst region[J]. , 2012, 33(2): 524 -530 .
[10] MA Gang , CHANG Xiao-lin , ZHOU Wei , ZHOU Chuang-bing . Deep anti-sliding stability analysis of gravity dam based on Cosserat continuum theory[J]. , 2012, 33(5): 1505 -1512 .